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Big Data Analytics for 
Autonomous Energy Grids



Learning from “Big Data” 

 Big size ( and/or )

 Challenges

 Incomplete

 Noise and outliers

 Fast streaming
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 Opportunities in key tasks 
 Dimensionality reduction
 Online and robust

regression, classification  
and clustering

 Denoising and imputation
Internet



Analytics for energy grids

Controlled islanding

Load and price 
forecasting

Distributed power system 
state estimation (PSSE) Bad data cleansing  

Consumer profiling

3

Scalable clustering into cellular blocks
for autonomous energy grids (AEGs)



Roadmap

 Closing comments

 Large-scale data and graph clustering

 Estimation with big data

 Context and motivation

 Distributed, robust, and scalable PSSE

 Sketching, censoring, and tracking

 Spatio-temporal imputation and forecasting



Centralized PSSE
 AEG with K cells

bus voltages

 SCADA measurements (quadratic in v)

 Nonlinear least-squares (LS) state estimator

(C-SE)

 Gauss-Newton iterative solvers via linearization, e.g., [Abur-Exposito’04]
sensitive to initialization (esp. w/ fast-varying states): convergence? 
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Convexification via SDR

(C-SDP)

Desiderata: Decentralized SDR scalable with control area size, privacy-
preserving, and solvable at affordable communication cost 

 Trick: make       linear in

H. Zhu and G. B. Giannakis, ``Estimating the state of AC power systems using semi-definite 
programming,” in Proc. North American Power Symposium, Boston, MA, Aug. 2011.

 SDR for SE [Zhu-GG’11] for SE; SDR for OPF [Bai etal’08], [Lavaei-Low’11] 
 Generalizations include PMU data, and robust SDR-based state estimation 

 (Near-)optimal regardless of initialization; polynomial complexity                           
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Cost decomposition
 Include tie-line buses; split local LS cost per 

Challenge: as overlap partially, PSD const. couples 

Blessing: overlap → global; no overlap:
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Decentralized SDR for PSSE

 ADMM  [Glowinski-Marrocco’75]; for D-Estimation [Schizas-Giannakis’06]
 Iterates between local variables and multipliers per equality constraint

Area  k Area  k

Local SDP Linear Update

 Converges                       even for noisy-async. links [Schizas-GG’08], [Zhu-GG’09]

(C-SDP)

 If graph (w/ areas as nodes, overlaps as edges) is a tree, then  
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118-bus test case
 Triangular configuration [Min-Abur’06]
 Power flow meters on all tie lines except for (23,24)

graph of areas is a tree
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Centralized 
estimation 
accuracy

 Local norms

converge in only 
20 iterations!

H. Zhu and G. B. Giannakis, ``Power system nonlinear state estimation using distributed semi-definite  
programming,” IEEE Journal on Special Topics in Signal Processing, pp. 1039-1050, December 2014. 9



Decentralized PSSE for linear models 

 ADMM solver: convergent w/ minimal exchanges and privacy-preserving 

 Local linear(ized) model

 Regional PSSEs

 Coupled local problems

V. Kekatos and G. B. Giannakis, “Distributed Robust Power System State Estimation,” 
IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 1617-1626, May 2013.

S1.

S2.
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Simulated test
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L. Xie, C. Choi, and S. Kar, ``Cooperative distributed state estimation: Local observability relaxed,’’
in Proc. IEEE PES General Meeting, Detroit, MI, July 2011.

MSE(decentralized-true)

MSE(decen.[Xie etal]-
centralized)

S2
.

S1.
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Decentralized bad data cleansing

This image cannot currently be displayed.

 Reveal single and
block outliers via 

S3.

S1.

S2.
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D-PSSE on a 4,200-bus grid

MSE(decentralized-true)
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Robust LAV 
 Robustness to outliers via least-absolute-value (LAV) criterion

2017 Ukrainian blackout 
by cyberattacks 

 Existing approaches (slow and non-scalable)
Subgradient solver [Jabr-Pal’03] 
Successive linear programming [Abur and Celik’91]

S. Lewis and S. J. Wright, “Proximal method for composite minimization,” 
Mathematical Programming, vol. 158, no. 1-2, pp. 501–546, July 2016.

nonconvex, non-smooth!

 Deterministic solver via composite optimization [Wang-Giannakis-Chen’17]

Linearization of            around iterate  

Locally tight quadratic
upper bound; convex!

Constant depending on      and  
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Scalable stochastic solver
 Stochastic composite optimization

G. Wang, G. B. Giannakis, and J. Chen, “Robust and Scalable Power System State Estimation 
via Composite Optimization,” arXiv:1708.06013, 2017.

Process one datum per tDraw datum                               randomly per t

 Merits
Very few operations per iteration (due to highly sparse       vectors)
Fast linear convergence under suitable conditions [Duchi-Feng’17]
Further acceleration via mini-batching of non-overlapping measurements

 Closed-form updates

Projection onto interval 

 ~5 mins on desktop for 9,241-bus grid; not enough memory for Gauss-Newton
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Roadmap

 Closing comments

 Large-scale data and graph clustering

 Estimation with big data

 Context and motivation

 Distributed, robust, and scalable PSSE

 Sketching, censoring, and dynamic tracking

 Spatio-temporal imputation and forecasting



Random projections for data sketching

 SVD incurs complexity                 Q: What if             ?  

M. W. Mahoney, Randomized Algorithms for Matrices and Data. Foundations and
Trends In Machine Learning, vol. 3, no. 2, pp. 123-224, Nov. 2011.

If

Least-squares (LS) with PMU data Given

 For                                                           , complexity reduces to                                   

 LS estimate via (pre-conditioning) random projection matrix Rd x D
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Performance of randomized LS

 Uniform sampling versus 
Hadamard preconditioning 

 D = 10,000 and p =50
 Performance depends on 

X and y 

D. P. Woodruff, ``Sketching as a Tool for Numerical Linear Algebra,'' Foundations and Trends in 
Theoretical Computer Science, vol. 10, pp. 1-157, 2014.

condition number of     ; and 

For any            , if                               , then w.h.p.Theorem.

 Based on the Johnson-Lindenstrauss lemma [JL’84] 
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Online censoring for large-scale regressions

D. K. Berberidis, G. Wang, G. B. Giannakis, and V. Kekatos, ``Adaptive Estimation from Big Data via 
Censored  Stochastic Approximation," Proc. of Asilomar Conf., Pacific Grove, CA, Nov. 2014.

 Key idea: Sequentially test/update LS estimates only for informative data

 Adaptive censoring (AC) rule: 
Censor if

 Criterion   

 Threshold controls avg. data reduction:   

19



Censoring algorithms and performance

Proposition 1  AC-RLS

AC-LMS

 AC recursive least-squares (RLS) at complexity  

 AC least mean-squares (LMS)   

D. K. Berberidis, V. Kekatos, and G. B. Giannakis, ``Online Censoring for Large-Scale Regressions with 
Application to Streaming Big Data," IEEE Trans. on Signal Processing, vol. 64, pp. 3854-3867, 2016. 20



Censoring vis-a-vis random projections
 RPs for linear regressions [Mahoney’11], [Woodruff’14]

 AC for linear regressions

 Data-agnostic reduction; preconditioning costs  

 Data-driven measurement selection
 Suitable also for streaming data
 Minimal memory requirements

 AC interpretations
 Reveals `causal’ support vectors
 Censors data with low LLRs: 
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Highly non-uniform data

 AC-RLS outperforms alternatives at comparable complexity 

 Robust to uniform (all ``important”) rows of  X ; 

Performance comparison
 Synthetic: D=10,000, p=300 (50 MC runs); Real data:          estimated from full set  

Q: Time-varying parameters?

22
D. K. Berberidis and G. B. Giannakis, "Data Sketching for Large-Scale Kalman Filtering," 
IEEE Trans. on Signal Processing, vol. 65, pp. 3688 - 3701, Aug. 2017.



Spatio-temporal load forecasting
 Essential for economic operation of power systems
 Economic dispatch, OPF, unit commitment (~hour)
 Reliability assurance and hydrothermal coordination (~week)
 Strategic generation and transmission planning (~year)

 Prior art: time-series models (ARMA/ARIMA/ARIMAX) [Shahidehpour et al’02]

 Challenges: account for spatiotemporal patterns; load volatility due to EVs

 Problem: given load measurements at M sites and N time slots
 Predict load at sites/times that data are unavailable; impute past; 

forecast future demand 

X? ?sites
(M)

time (N) →

23



Low-rank plus sparse non-negative factors
 Load matrix obeys low-rank plus sparse non-negative bi-factor model

 Identifiability issues  

 X ~ L + S (L: low-rank; S: sparse) [Candes et al’11], [Wright’13]

 X ~ L + CS (L: low-rank; S: sparse; C: given) [Mardani et al’13]

 Identifiability of our model is plausible but yet to be established

 Low-rank L due to periodicities (daily, weekly, monthly), and latent factors 
(user preference, temperature)

 Non-negative matrix factorization ABT captures load clusters

24



Load inference algorithm 
 Equivalent formulation

J. A. Bazerque and G. B. Giannakis, “Nonparametric Basis Pursuit via Sparse Kernel-based Learning,”
IEEE Signal Processing Magazine, vol. 30, no. 4, pp. 112-125, July 2013.         

 Solved via block coordinate descent; closed-form per iteration

 Kernelized formulation allows extrapolation [Bazerque-GG’13] 

 Rp, Rq, Ra, Rb: positive-definite sample covariances (kernels)

25



Test with real data

 M = 17 sites 

 N = 4 * 7 * 24 (4 weeks)

 r = ρ = 5

 Forecast the last 24 hours 
(RMSE = 0.1)

solid: true
dashed: forecast

S.-J. Kim and G. B. Giannakis, ``Forecasting Loads and Renewables via Low Rank and Sparse 
Matrix Factorization,” Proc. of Asilomar Conf. on Signals, Systems, and Computers, Nov. 3-6, 2013. 26



Roadmap

 Closing comments

 Estimation with big data

 Context and motivation

 Large-scale data and graph clustering

 Sketching and validation   

 Spectral clustering 

 Sketched subspace clustering   
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Big data clustering 
 Clustering: Given                  , or their distances, assign them to K clusters     

A1. Random Projections: Use dxD matrix R to form RX; apply K-means in d-space     

 K-means: locally optimal, but simple; complexity O(NDKI)  

Centroids

Assignments

 Hard clustering: NP-hard!  Soft clustering:

Q. What if and/or              ?

C. Boutsidis, A. Zousias, P. Drineas, and M. W. Mahoney, “Randomized dimensionality reduction for K-means 
clustering,” IEEE Trans. on Information Theory, vol. 61, pp. 1045-1062, Feb. 2015.

 AEG context: consumer profiling, controlled islanding
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Random sketching and validation (SkeVa)
 Randomly select               “informative” dimensions  

 Algorithm 

 Sketch dimensions: 

 Similar approaches possible for

For

 Run k-means on 

 Re-sketch                      dimensions  

 Validate using consensus set  



 Augment centroids                                                     , 

 Sequential and kernel variants available

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, "Sketch and Validate for Big Data Clustering,"
IEEE Journal on Special Topics in Signal Processing, vol. 9, pp. 678-690, June 2015. 29



RP versus SkeVa comparisons

KDDb dataset (subset)
D = 2,990,384, N = 10,000, K = 2

versus SkeVa
RP: [Boutsidis etal ‘15] 
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Performance and SkeVa generalizations 
 Di-SkeVa fully parallelizable  

A. For independent draws,        can be lower bounded

Proposition 2. For a given probability of a successful Di-SkeVa draw r quantified 
by pdf dist. ∆, the number of draws is lower bounded w.h.p. q by

Q. How many samples/draws SkeVa needs?

 Bound can be estimated online  

 SkeVa module can be used for spectral clustering and subspace clustering 
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Scalable clustering of cellular blocks

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, “Spectral clustering of large-scale communities via random 
sketching and validation,” Proc. Conf. on Info. Science and Systems, Baltimore, Maryland, March 18-20, 2015.

 Kernel K-means instrumental for partitioning of large graphs (spectral clustering)
 Relies on graph Laplacian to capture nodal correlations

 For           , kernel-based SkeVa reduces complexity to  

arXiv collaboration network (General Relativity): N=4,158 nodes, 13,422 edges, K = 36 [Leskovec’11]

Spectral clustering
3.1 sec

SkeVa (n = 500)
0.5 sec

SkeVa (n=1,000)
0.85 sec
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Subspace clustering

33

 Given high-dimensional data 

Find K subspaces (clusters)               ,
their dimensions 
their centroids
their bases
their low-dimensional representations

R. Vidal, "A tutorial on subspace clustering," IEEE Signal Processing Magazine, pp. 52-68, 2010.

 Encapsulates K-means and PCA



State-of-the-art batch approaches
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 Sparse subspace clustering (SSC): Relies on sparsity to choose nearest neighbors

 A point in d-dim subspace as a lin. comb. of d(d+1) points in the same space

 Use spectral clustering with affinity matrix:   

Computationally 
heavy for large N

 Low-rank representation (LRR): Low-rank instead

 Least-squares regression (LSR): Frobenius norm instead

E. Elhamifar, and R. Vidal, "Sparse subspace clustering: Algorithm, theory, and applications,“ 
IEEE Trans. on PAMI, pp. 2765 -2781, 2013.



Sketched subspace clustering
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 Use a smaller D-by-n “basis”: 

variables to optimizeSolve:

Q. How to select B? A. 
 Use spectral clustering on

Prop. 3a If R is Nxn JLT,                                , then                               ,    whp

Prop. 3b If                                              with R Nxn JLT, then  

P. A. Traganitis and G. B. Giannakis, “Sketched subspace clustering,” arXiv:1707.07196, 2017.



Extended Yale Face database B
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 N = 2,048, D = 2,016, K = 10

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: Illumination cone models 
for face recognition under  variable lighting and pose,” IEEE TPAMI, vol. 23, no. 6, pp. 643–660, 2001.



Anomalies in social (or AEG) graphs
 To identify e.g.,  “strange” users and “atypical” behavior

 Challenge: Too many users, BUT few features per user

 Approach: Adopt “egonet” features, and leverage structure; e.g., sparsity and low rank

 Examples

 E-mail spammers

 Cybercriminals

 Terrorist cells

Can early detection of anomalies 
halt future terrorist attacks?

B. Baingana, P. Traganitis, G. Mateos, and G. B. Giannakis, ”Big data analytics for social networks,”
Graph Analysis for Social Media, I. Pitas, Editor, CRC Press, 2015. 

 Egonet features

 Degree, number of edges, 
centrality, betweeness, … 

37



Low-rank plus sparse model
 Egonets can unveil anomalous behavior [Akoglu et al’10]

 Account for “misses” via sampling operator 

 N-node graph with egonet features  

 collects D features for egonet n

 Nominal features related via “power law” while anomalies are sparse

Low-rank nominal features Sparse outlier matrix

Egonet
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Robust low-rank component pursuit

 Numerical test: Anomalies in ArXiv collaboration network (General Relativity co-authors)

 D = 9, N = 5,242 nodes

 Observed Jan. ‘93 – Apr.’03

 Low-rank- plus sparsity-promoting estimator

 and 

M. Mardani, G. Mateos, and G. B. Giannakis, ``Recovery of low rank plus compressed sparse matrices with
application to unveiling traffic anomalies,'’ IEEE Trans. Info. Theory, vol. 59, no. 8, pp. 5186-5205, Aug. 2013. 39



Closing comments

 Other key Big Energy Data tasks

 Regression and tracking dynamic data 

 Large-scale estimation and  scalable clustering  

 Enabling tools for Big Data 

 Scalable computing platforms

K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization for Big Data analytics,” 
IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 18-31, Sep. 2014. 

 Nonlinear non-parametric function approximation 
 Clustering massive, high-dimensional data and graphs 

 Visualization, mining, dynamics, privacy, and security 

 Acquisition, communication, processing, and storage 

 Fundamental theory, performance analysis
decentralized, robust, large-scale, and parallel optimization 

Thank You!
40
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