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Vision for autonomous energy grids (AEGS)

* Autonomous grids — able to seamlessly connect and
disconnect from other grids.

* |Incorporate variable generation, energy storage,

controllable loads, multiple energy carriers, energy
conversion.

« Supported by a scalable, reconfigurable, self-
organizing information and control infrastructure.

« Capable of a high level of security and resilience.

« Self-optimizing in real time for economic and reliable
performance.
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Transition

- What might motivate/justify a move to AEGS?
— Economic benefits for consumers? For utilities? Others?
— Reliability improvements.

* What technical issues might arise in transitioning to a
network of AEGs?

— Can older devices be incorporated? Example: autonomous
vehicles have trouble coping with illogical drivers.

— Standards and interoperability.

* Socio-economic issues arising from stranded assets
due to reduced reliance on the grid.
— Who pays? Poorer consumers who can’t afford to join an AEG?
— Policy.

« Who is responsible for the design of AEGs (cable size,
protection, communications, ...)? What about safety?
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Energy hubs as AEGs

* Energy hubs are building
blocks of multi-energy systems.

* Questions relating to dynamics,
optimization.
— Example: fuel cells are non-
minimum phase.

Natural Gas Electricity

« Chilled water plant, C.
« Steam boiler plant, B.

« (Gas turbine cogeneration plant,
Cogen.

« Electrical transformer, T.
« Thermal energy storage, TES.

Cooling Heating Electricity
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Large versus small systems

* Physics-based energy sTorage inherent in the rotating mass of
large generators results in ‘slow’ changes in frequency.

— Controls govern the time constants in inertia-less AEGs.
— Is it even necessary for tight frequency control in AEGs?
« Diversity across large numbers of loads gives smoothing and
predictability.
— Probably not the case for many AEGs.
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Some technical issues

* Protection.
— “If it can’ t be protected then it can’ t be built.”
— What level of sophistication is required?
— Who designs and pays?
— Adaptation is probably necessary as AEGs reconfigure.

 Is it necessary for tight frequency control in AEGs?

« Synchronizing AEGs and the grid requires frequency
control (and special circuit breakers).
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Data analytics

« The highly adaptive nature of AEGs implies the need
for real-time assessment of network structure and
parameters.

— Real-time state and parameter estimation.
— Needed for optimization, control, protection, ...

« Techniques for wide-area monitoring (using PMUSs)
may not be applicable for AEGs.

« Learn the patterns of generation and load.
— Diurnal behaviour of consumers, solar production.
— Determine occupancy. Though privacy issues.
— Exploit weather forecasts.
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Optimization

* Purchase agreements with neig?bours, utility.
— How much should | pay?
— Consumers are unlikely to want to get involved so the
process should be automated.
«  Optimization of storage with limited future information
iInvariably results in suboptimal scheduling.
— Exploit learned behaviour as best possible.

« Games will (most likely) arise through competing
objectives.
— Benign interactions don’ t happen by chance. Everyone
wants to exploit the cheapest energy.
* Need to consider stochasticity.

— Determine both the optimal operating condition and optimal
policies that address deviations from the forecast.

— Can this be handled in a distributed manner?
MichiganEngineering —

8/12



Control
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Primary frequency control is fairly straightforward,
particularly droop-based strategies.

— Should avoid controls that need to know if the AEG is
interconnected or not.

Secondary control relies on optimization.
— May require distributed/consensus algorithms.

How useful are prediction-based algorithms when the
future is so uncertain?
— Example: model predictive control.

Sophisticated systems may introduce vulnerabilities,

whereas simpler, more secure systems are sub-optimal.

Uncontrollable devices may overwhelm controllable
assets.
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Load control

« Loads frequently undergo discrete jumps.

— Control strategies that exploit aggregation may not be applicable for
small populations within AEGs.

— Queueing/scheduling controls may be more useful.
* How can control response be validated when the baseline is
unknown? 220
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Analysis (1)

«  With much faster dynamics, how
appropriate are phasor-based
models?

« AEG systems are stochastic,
hybrid (continuous/discrete)
nonlinear dynamical systems, with
uncertain delays.

— A system may be stable in two
different configurations but switching
between them results in instability.

— Can stability be guaranteed or is
simulation required?

— Are there computationally efficient
approaches to handling uncertainty?
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Analysis (2

* Dynamic models may be complex.
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