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What do operators do?

oerational planning
neration under forecast conditions

O
O
* Operation under contingency conditions
Operation under emergency conditions
e Restoration after a blackout
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Operational planning

* Purpose:
— Are enough resources available?
— Under all credible operating conditions

— Day-ahead, week(s) ahead
e At the root of all further automation

* Challenges:
— Stochastic renewable generation
— Electricity markets
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Operational planning

e Can this be automated?

— Involves a lot of data gathering
* Forecasts: load, markets, renewable generation
* Maintenance plans: generation, transmission

— Simulation tools are increasingly sophisticated

— Fairly routine work
» Well-established criteria and procedures

— Except in unusual circumstances
* Severe weather, eclipses, unanticipated outages

© 2017 D. Kirschen and University of Washington



Operation under forecast conditions

* Normal operation is quite boring...

e Substantially automated:
— Automatic Generation Control (AGC)
— Real-time balancing markets (5 minutes)
— EMS real-time sequence

* |ssues:
— Safety clearances for maintenance operations
— Nuisance alarms
— Interactions with neighboring systems
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Operation under contingency conditions

* Contingency condition = anticipated credible
deviation from forecast conditions
— N-1 conditions:
* Generation outage
* Transmission outage

— Large deviation from net load forecast

* Preventive vs. corrective security



Preventive security

e System remains stable after the contingency
e System is typically no longer N-1 secure
* Must be returned to a N-1 secure state

* Must determine that state by solving a Security
Constrained Optimal Power Flow (SCOPF)

 Must drive the system towards that state
 May have implications for later operations
* Could probably be automated
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Corrective security

* Post-contingency corrective actions are
required to maintain stability

e System operators prefer preventive security
because an immediate response is not needed

e Manual vs. automatic corrective actions
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Automated corrective actions

* Also known as Remedial Action Schemes (RAS)
* Fast action often involving load shedding

* Usually event-driven rather than state-driven

— Difficult to define states where scheme should/should
not trigger

— Leads to a multiplication of these schemes

— Interactions between schemes not well-understood

* Schemes are often armed only under certain
conditions to avoid spurious operation



Manual corrective actions

* Generation redispatch, line switching, reactive
device switching, fast starting generation

* Take advantage of slower system time
constants

* Some work has been done on automating
these actions
— e.g. Almassalkhi & Hiskens
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Operation under emergency conditions

* Emergency conditions = beyond what is
considered credible

* Leads to blackouts
* Space is vast
* Operators:

— Lack situation awareness
— Hesitate to take drastic actions



Automation under emergency conditions

EDF developed a network splitting scheme to
deal with emergencies

— Goal: save parts of the system from collapsing
Operated the scheme in open loop
Generated several false alarms

Scheme was discontinued
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Why do we get blackouts?

* Typical large scale blackout:
— Trigger in the heavy electrical infrastructure

— Compounded by problems in the information
infrastructure

* Don’t have models that link the two

* Don’t know when the information is wrong

* Automation can and does make matters worse
e QOut-of-the-loop syndrome
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Restoration after a blackout

* Unknown territory
* No two blackouts are the same
* Lots of unexpected problems crop up

* Requires communication with many actors
— Field crews, power plants, ..

* Requires specialist knowledge in a variety of
areas
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Context

Power system under a contingency condition
Operating constraints are violated:

— Line flow limit
— Voltage limit

Corrective actions are required:
— Generation redispatch
— Voltage set-point adjustment

Can we automate the process?



Concept

e Standard approach:
— Determine a new operating point using an OPF
— Drive the system towards that operating point

* Problems:
— Full OPF solution takes time
— Models are inaccurate
— Trajectory may be problematic

 Work by Steve Low and his students on online
algorithm for OPF

 Can we just do that using closed loop control?



Automatic Generation Control (AGC)
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Contingency alleviation concept
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Basic algorithm

e Detect operating constraint violation(s) from
network measurements

* Determine optimal control actions that can be
implemented considering ramp rate limits and
update rate of AGC

e Wait for next measurement

— Start moving the system immediately
towards a better, more stable operating point
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Schematic representation
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Objective function

Basic objective function:
_ 1 —
L= Z max(|V; — 1| —v,0) + = Z max (| S| — Sij,0)
leN! (ij)EE
e Not smooth
* Not sensitive to variables close to their limit

Penalized objective function:

1
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Penalty function for constraint violations

Basic vs. penalized objective function:
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Optimization problem at each

1teration
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Simplifications

* Small steps = suitable for linearization
* Take advantage of active/reactive decoupling

* Sensitivities based on fast decoupled power
flow

- Fast LP formulation of the optimization
problem
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Simulations

* |[EEE 118-bus system

* Three types of operating constraint violations:
— Line overloads
— Over and under-voltages
— Combined overloads and voltage violations

2017 D. Kirschen and University of Washington



Line overloads
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Line overloads

Basic vs. penalized objective function
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Line overloads

Normalized line flows
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Line overloads

Bus active power injections
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Voltage violations
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Voltage violations
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Voltage violations

Voltages and set-points for violation at bus 63
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Voltage violations

Objective functions for voltage violation at bus 63
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Voltage violations

Bus voltages for violation at bus 63
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Combined overload and voltage violation

402 simulations: 5 voltage violations x 67 line overloads
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Conclusions

* Proposed a closed-loop approach to the relief
of violations of operating conditions

— Relies on the network as a natural solver

— Operates in parallel with the frequency control
loop

— Small steps allow linearization
— Efficient LP solution even for large systems

* Demonstrated on 118-bus system for
overloads and voltage violations
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