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 Can we obtain the solution to an optimization problem without actually solving one?

Can my smart thermostat solve a complex optimization problem in real time?
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 Can we obtain the solution to an optimization problem without actually solving one?

Can my smart thermostat solve a complex optimization problem in real time?

Can grid operators pursue optimal generation settings in real time?

 Without relying on real-time heuristics like AGC?

 While hedging against suboptimality0?

0 Billions of dollars annually are lost due to OPF suboptimalities.  M. Cain, R. P. O’Neill, and A.
Castillo, “History of optimal power flow and formulations,” FERC Technical Report, Aug. 2013.
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 Can we obtain the solution to an optimization problem without actually solving one?

Current Paradigm

Obtain initial guess
(flat start? Solve a DC OPF?

Line search?)

Solve. Linearize/convexify?
Invert matrices?

Iterate? Tune parameters?

Didn’t converge?

Obtain optimal solution

Hmm, this approach is done hundreds of times daily for OPF…can we use this information to
help us more quickly find future OPF solutions?

“the volume of data being generated in the power sector has grown tremendously….
the majority of data is either not logged, or they are overwritten very quickly1”

1 H. Akhavan-Hejazi and H. Mohsenian-Rad, “Power systems big data analytics: An assessment of paradigm shift barriers and prospects,” Energy Reports, 2018.
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 Can we obtain the solution to an optimization problem without actually solving one?

Current Paradigm

Obtain initial guess
(flat start? Solve a DC OPF?

Line search?)

Solve. Linearize/convexify?
Invert matrices?

Iterate? Tune parameters?

Didn’t converge?

Obtain optimal solution

Proposed Paradigm

Train Machine Learning
model offline on historical

OPF runs

Inference

(no matrix inversions.)

Input new loads
Obtain candidate
optimal solution

(potential post-processing
for feasibility).



Does this actually work?

July 2020: A. Velloso and P. Van Hentenryck use deep learning to obtain solutions with near-negligible
feasibility and optimality gaps (under 0.1%) for Security Constrained DC OPF on a 1,888 bus network 
on an average of less than two seconds2.

Sept. 2019: A. Zamzam and K. Baker use deep learning to obtain feasible AC OPF solutions with negligible 
optimality gaps 6-20x faster than a state of the art solver3.

2 A. Velloso and P. Van Hentenryck, “Combining Deep Learning and Optimization for 
Security-Constrained Optimal Power Flow,” https://arxiv.org/abs/2007.07002, July 2020. 

3 A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow,” 
https://arxiv.org/abs/2861719, Sept. 2019

https://arxiv.org/pdf/2007.07002.pdf
https://arxiv.org/abs/2861719


Outside of power and energy:

 Uses reinforcement learning to design 
optimization algorithms for unconstrained problems

 Uses neural networks to solve mixed integer quadratic programs in milliseconds (solves a MIQP in less 
time than it takes to perform a single matrix factorization).



Why is it powerful?
 We can convexify or linearize the hard equations (e.g. the AC power flow equations) to solve these 

problems quickly, but convexifying generally makes us lose information

 Neural networks preserve nonconvex, complicated relationships between variables



Why is it powerful?
 We can convexify or linearize the hard equations (e.g. the AC power flow equations) to solve these 

problems quickly, but convexifying generally makes us lose information

 Neural networks preserve nonconvex, complicated relationships between variables

 Inference (the process of making a prediction) mostly involves applying functions, multiplying, and adding

 It’s an approximation, but it can be a damn good one

Did you know?

Many grid operators use a linear approximation 
every day to solve optimal power flow – the DC 
approximation. However, solutions from the DC 

approximation are never AC feasible. Meaning, the 
intersection of the feasible region of DC OPF and 

the AC OPF is empty4!4 K. Baker, “Solutions of DC OPF are Never AC Feasible: 
Learning to Lower the Gap,” https://arxiv.org/abs/1912.00319, Apr 2020

https://arxiv.org/abs/1912.00319


Opinions from your presenter 
ML for OPF’s benefits decline / do not make sense for most small networks, or most
standard DC OPF formulations. These problems can already be solved to optimality with 
free software in seconds5.

If used in a real power system, would likely be a combination of learning and post-
processing (if a nonconvex problem) or physics-informed/embedded constraints (if
a convex problem) to ensure physical constraints hold.

Level of accuracy and speed for the level of optimality/feasibility sacrifice may in 
general be worth it. Worst-case guarantees have been defined6

5 J. Kardos, D. Kourounis, O. Schenk, and R. Zimmerman, “Complete results for a numerical evaluation of interior point solvers for 
large-scale optimal power flow problems,” https://arxiv.org/abs/1807.03964v3, July 2018.

6 A. Venzke, G. Qu, S. Low, and S. Chatzivasileiadis, “Learning Optimal Power Flow: Worst-Case Guarantees for Neural Networks,”
https://arxiv.org/abs/2006.11029, Jun 2020. 

https://arxiv.org/abs/1807.03964v3
https://arxiv.org/abs/2006.11029
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Idea: How do we obtain feasibility?
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 Maybe instead of trying to make an ML model directly predict an optimal solution, we use it to 
predict a close solution, then use this as a warm start to an AC OPF solver7,8,9? 

7 K. Baker, “Learning warm-start points for AC optimal power flow,” IEEE Machine Learning for Signal Proc. Conf., Oct. 2019.
8 F. Diehl, “Warm-starting AC optimal power flow with graph neural networks,” Neural Information Processing Systems (NeurIPS 2019), Dec 2019.
9 L. Chen and J. Tate, “Hot-Starting the Ac Power Flow with Convolutional Neural Networks,” https://arxiv.org/abs/2004.09342, Apr. 2020

https://arxiv.org/abs/2004.09342
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 Maybe instead of trying to make an ML model directly predict an optimal solution, we use it to 
predict a close solution, then use this as a warm start to an AC OPF solver7,8,9? 

7 K. Baker, “Learning warm-start points for AC optimal power flow,” IEEE Machine Learning for Signal Proc. Conf., Oct. 2019.
8 F. Diehl, “Warm-starting AC optimal power flow with graph neural networks,” Neural Information Processing Systems (NeurIPS 2019), Dec 2019.
9 L. Chen and J. Tate, “Hot-Starting the Ac Power Flow with Convolutional Neural Networks,” https://arxiv.org/abs/2004.09342, Apr. 2020

Directly trained a Random Forest on a dataset 
comprised of AC OPF solutions.

Input: System loads (real and reactive)
Output: Optimal generation and voltages

https://arxiv.org/abs/2004.09342
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Used MIPS MATPOWER solver and changed the initial point from flat start to DC OPF start to Learned-start

Ran 400 AC OPFs with randomly generated loading profiles 

Random forest actually didn’t do that bad in predicting the optimal solution, making it a good starting point for
an iterative solver. But neural networks can do even better…



Talk Outline

• Machine learning for optimization: The revolution

• Warm-starting OPF with Machine Learning

• Obtaining approximate OPF solutions extremely quickly

• Obtaining feasible OPF solutions with Machine Learning?

• Future Directions

K. Baker, Learning Boosted OPF 20



Consider one of the most popular algorithms 
to solve AC OPF: Newton-Raphson

K. Baker, Learning Boosted OPF 21

AC OPF Newton step k+1

Typically:

Active/reactive power generation
Voltage magnitudes/angles

Vector of KKT conditions
evaluated at xk

Jacobian of KKT conditions
Evaluated at xk



Newton-Raphson. What makes it slow?
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Using traditional Newton’s method to solve
AC OPF. Using learning-boosted Newton’s method to solve

AC OPF.



Forming, and inverting, the Jacobian/Hessian
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 Introduce Quasi-Newton methods that either:

 Approximate the Jacobian

 Approximate the inverse of the Jacobian

Chord method:

Only periodically calculate J-1 and just deal with 
inexact search directions in between

Approximate Newton Directions10:

Assume block-diagonal Jacobian and distribute 
the computations

10 A. Conejo, F. Nogales, and F. Prieto, “A decomposition procedure based on approximate Newton directions,” Mathematical Programming, 2002.

… many more



Can we…skip the whole Jacobian thing?
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Newton step k+1

Can we learn the next Newton step based on our current step?

Learning-Boosted Quasi-Newton11

11 K. Baker, “A Learning-boosted Quasi-Newton Method  for AC Optimal Power Flow,” https://arxiv.org/abs/2007.06074, Jul 2020. 

https://arxiv.org/abs/2007.06074


Idea: Use a recurrent neural network to iterate

25
K. Baker, “A Learning-boosted Quasi-Newton Method  for AC Optimal Power Flow,” https://arxiv.org/abs/2007.06074, Jul 2020. 

Both Newton-Raphson and Learning-Boosted Newton Raphson are fixed point iterations:

But the learning-boosted method has an easier to evaluate F()

Key Idea:

It may be easier to learn what direction to 
move in than to directly learn an optimal 

solution from an initial point

https://arxiv.org/abs/2007.06074


Guaranteed convergence : F is a Contraction

26
12 J. E. Steck, “Convergence of recurrent networks as contraction map- pings,” in Intl. Joint Conference on Neural Networks (IJCNN), Jun. 1992. 

Given restrictions on activation functions and bounds on weight magnitudes in
the neural network, convergence of the learning-boosted model is guaranteed12!

(Note this just guarantees convergence, not convergence to the optimal.)

The network can be represented as a contraction mapping and shown to
converge to a unique fixed point.



Other tricks and implementation
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Thresholds on output layer can ensure upper/lower variable limits

Used a convergence criteria of 10-9 for generating training data to
generate ”basins of attraction” for the model

Implementation details

Each training data point was a pair [x(k), x(k+1)] generated from iterations in the MATPOWER MIPS solver

A heuristic for number of nodes was used and then tuned. Predictors (inputs) normalized

Keras + Tensorflow were used with the Adam optimizer to train the network locally on my 3-year old laptop

30, 300, 500, 1,354-bus networks were tested



Convergence
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Takes more iterations to converge because each iteration is using an approximate direction,
but each iteration is faster



Added benefit: No singular Jacobians!
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The Jacobian can be singular near or even at the optimal solution in AC OPF, making convergence time
slow and unpredictable.

No singular matrix inversions have to be dealt with in the learning boosted approach, making the time to convergence
predictable and variance in convergence time low.



Optimality and Feasibility gaps
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Real-time optimal solution tracking
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Slack-bus generator tracking optimal solutions 
(black dashed line) for the IEEE-500 bus system.

MATPOWER MIPS solver takes a couple seconds 
to solve, meaning its optimal generation 
setpoints are outdated in between solutions.

The learning-boosted method provides 
approximate optimal solutions in less than a 
second, making it more appropriate for real-
time optimization.



Downsides to ML for OPF or learning-boosted OPF
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Traditional optimization still has its upsides!

 If a single constraint (e.g., a component) needs to be added or removed, it’s likely you’ll need an entirely separate
ML model (you can do it since they’re trained offline, but it would be annoying).

 No guarantee on solution feasibility (there are ways you can do it for convex problems13); but a post-processing 
method can help with feasibility (more on this in a minute)

 Improperly tuned models, not using enough training data, class imbalance, etc. can be disastrous! 
(designing a good NN architecture is a complicated problem)

13Y. Chen, Y. Shi, B. Zhang, “Input Convex Neural Networks for Optimal Voltage Regulation,” https://arxiv.org/abs/2002.08684, Feb. 2020

https://arxiv.org/abs/2002.08684
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ML for OPF with feasibility recovery step
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Based on work in collaboration with Ahmed Zamzam at NREL14

14 A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow,” https://arxiv.org/abs/2861719, Sept. 2019

Overall idea: Use neural network to obtain subset
of OPF variables sufficient to find the rest of the 
solution. Use nonlinear equation solver to obtain full 
OPF solution

Tricks:

• Generate training samples with slightly restricted
feasible regions to push samples away from 
constraint boundaries

• Parameterization of variables / output layer 
ensures variable upper/lower limits satisfied

https://arxiv.org/abs/2861719


Speedup = depends how often are we infeasible
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14 A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow,” https://arxiv.org/abs/2861719, Sept. 2019

Predicted solution was 
feasible = bigger speedups

Predicted solution wasn’t
feasible = smaller speedups

https://arxiv.org/abs/2861719


Feasibility and Optimality gaps?
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14 A. Zamzam and K. Baker, “Learning optimal solutions for extremely fast AC optimal power flow,” https://arxiv.org/abs/2861719, Sept. 2019

Maximum power flow 
constraint violationAverage gap between

optimal and predicted
generation

Average
speedup

https://arxiv.org/abs/2861719
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So…real-time AC OPF is a solved problem?
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Absolutely not! These are just some promising first steps

Embedding constraints into the NN is an area of active research
 Can penalize constraint violations in the loss function15

Optimal design of NN architectures

Using ML for both classification + regression problems 
(Unit Commitment, etc.)

15M. Chatzos, F. Fioretto, T. Mak, P. Van Hentenryck, “High-Fidelity Machine Learning Approximations of Large-Scale Optimal Power Flow,” 
https://arxiv.org/abs/2006.16356, Jun 2020.

https://arxiv.org/abs/2006.16356


Thank you! Questions?
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Kyri Baker
Kyri.baker@colorado.edu

mailto:Kyri.baker@colorado.edu


Extra Slide: NN parameters
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