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Problem Formulation

Switched LTI plant

T =A,r + Byu+ E,w
y=Czx+ Dw

w — Unknown disturbance
u — Control input

y — Output

o(t) — Switching signal
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Problem Formulation

Switched LTI plant Objective: output regulation

&= A,z + Byu+ E,w min, , g(u)+ h(y)

y=Cx+ Dw s.t. 0= A,x+ Byu+ E,w
y=Cz+ Dw

w — Unknown disturbance

u — Control input Regulate the plant to the

y — Output equilibrium points that

o(t) — Switching signal minimize a given cost
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Problem Formulation

Switched LTI plant Objective: tracking of solutions

T = Ayx + Byu + E;w min, , g(u,t) + h(y,t)

y=Czx+ Dw s.t. 0= A,z + Bou+ E,w(t)
y=Cx+ Dw

w — Unknown disturbance

u — Control input Output tracks optimal solu-

y — Output tion trajectory implicitly defined

o(t) — Switching signal by a time-varying problem
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Problem Formulation

Switched LTI plant Objective: tracking of solutions

= A,z + Byu+ E,w min, , g(u,t) + h(y,t)

y=Cz+ Dw s.t. 0= A,z + Bou+ E,w(t)
y=Cx+ Dw

w — Unknown disturbance

u — Control input Output tracks optimal solu-

y — Output tion trajectory implicitly defined

o(t) — Switching signal by a time-varying problem

Key quantity in this talk: w — time-variability of an optimal solution
le., w <« 4*
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Algorithmic design

Model-based and with

. . Online optimization
time-scale separation

b Offline optimization Closed-loop optimizer
~=— (feedforward) u=F, (u, Y, t)
vu’
Dynamical system Dynamical system
T = Asr + Byu + E,w T = Asr + Byu + E,w
y=Cz+ Dw y=Cz+ Dw °

Local control / regulation

E. Dall'Anese (CU Boulder) Online Optimization of Switched Systems Aug 20, 2020 5/23



Motivating Examples

min Total Travel (Cost, Time)
s.t. Network is at equilibrium
(Using real-time measurem.)

[Bianchin-Pasqualetti'20], [Grandinetti et al '18]

min Total generation cost
s.t. Swing equation
(Using real-time measurem.)

[Menta et al'19], [Colombino et al'20]
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Motivating Examples From Traffic Control

[Suboptimal controllers (i.e., route selection) — instabilities]

Travel
Times

Traffic Dynamics

E. Dall'Anese (CU Boulder)

Two parallel roads:
1 =—f(x1) +rA
By = —f(w2) + (1 —7)A

Drivers select the fastest route:
r=r(l—r)(rxy—mz)

"free” selfish routing With controller
25 25
4 2 4 2
:g 15 ::é) 1.5
= 0.5 = 0.5
0 0
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Time Time
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Motivating Examples From Traffic Control (2)

[Uncontrolled traffic — instabilities]

Uncontrolled system

2
Traffic o IR

Density

w
S

Traffic Dynamics

State-Dependent

Switching

N
1

N
S

Traffic Densities

7

Mode
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Traffic Densities

A more accurate model: CTM
1 = — min{dlxl, 82.732} =+ 791 min{dgl‘g, 81331} =+ wq
&9 = —min{daxa, s121} + rigmin{dixy, soxa} + wo

Roads have two modes: free-flow and congested

With controller

? ? ——u —— Optimal u

Control

I
S

w

|
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Related Work (a short list)

e Related to feedback-based optimization (with plant oo fast)

[Jokic et al'09], [Bolognani et al'13], [Bernstein et al'13], [Dall’Anese-Simonetto'16], [Bernstein et al'19], [Colombino et al’19], ...
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Related Work (a short list)

e Related to feedback-based optimization (with plant oo fast)

[Jokic et al'09], [Bolognani et al'13], [Bernstein et al'13], [Dall' Anese-Simonetto'16], [Bernstein et al'19], [Colombino et al'19], ...
e [Menta et al'19]: LTI, static optimization, stability of strict local optima
e [Hauswirth et al’20] extension to nonlinear dynamical systems
e [Lawrence et al’18] Joint stabilization and regulation, static, LTI
e [Colombino et al'18] LTI, time-varying, strongly convex, exponential ISS

e [Zheng et al'19] Feedback-linearizable systems, time-varying
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Related Work (a short list)

e Related to feedback-based optimization (with plant oo fast)

[Jokic et al'09], [Bolognani et al'13], [Bernstein et al'13], [Dall' Anese-Simonetto'16], [Bernstein et al'19], [Colombino et al'19], ...
e [Menta et al'19]: LTI, static optimization, stability of strict local optima
e [Hauswirth et al’20] extension to nonlinear dynamical systems
e [Lawrence et al’18] Joint stabilization and regulation, static, LTI
e [Colombino et al'18] LTI, time-varying, strongly convex, exponential ISS
e [Zheng et al'19] Feedback-linearizable systems, time-varying
Today: switched LTI, time-varying, exponential ISS, gradient flow

In the paper: Hybrid Nesterov, practical stability, other results ...
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Design of Feedback Controllers

Switched LTI plant Time-varying problem

&= Asx + Bou + Es;w min, , g(u)+ h(y)

y=Czx+ Duw s.t. 0= A,z + Byu+ E,w
y=Cx+ Dw

Recall: gradient flow (if plant is oo fast and w is known)

y=—-CA'Bu+ (D-CA'E)w
i = —Vg(u) — GTVh(Gu + Hw) “solves” the optimization
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Design of Feedback Controllers

Switched LTI plant Time-varying problem

&= Asx + Bou+ Eyw ming, ; g(u) + h(y)

y=Cx+ Dw s.t. 0=A,z + Byu+ E,w
y=Cz+ Dw

Proposed online gradient-based controller:

DUngntg)wn
isturbance
w

ek = Asx + Byu + E,w
y = Cx + Dw
@ = —Vg(u) = GTVh(y)

Gradient Controller

N
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Framework: Hybrid Dynamical Systems

DUngnb(‘)wn
isturbance
Gi(s .
v et = Agx + Byu + Ejw

y=Cx+ Dw
i = —Vg(u) — GTVh(y)

Gradient Controller

LN
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Framework: Hybrid Dynamical Systems

DUngnb(‘)wn
isturbance
Gi(s .
v et = Agx + Byu + Ejw

Gradient Controller

LN

Hybrid dynamical system (HDS):

y=Cx+ Dw
i = —Vg(u) — GTVh(y)

Flow: z € F(z,w) Jumps: 2t € G(z,w)
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Framework: Hybrid Dynamical Systems

DUngn}g)wn
isturbance
Gi(s .
v et = Agx + Byu + Ejw

Gradient Controller

LN

Hybrid dynamical system (HDS):

y=Cx+ Dw
i = —Vg(u) — GTVh(y)

Flow: z € F(z,w) Jumps: 2t € G(z,w)

HDS for interconnection between gradient flow and plant:

Flow: &g = Agx + Bsu + E,w Jumps: gt = ¢
i = -Vg(u) — GTVh(Cz + Dw) ut = u
o= ot eS

7 €[0,1/7q4]) 74 — average “dwell time" t=r—_1
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ISS for Hybrid Dynamical Systems

HSD with flows 2 € F(x,w) and jumps: T € G(z,w)

Definition [Nesi¢ et al '13]. The compact set A is ISS if:

12(¢ 3)l.a < B(1I(0,0)]l.45 £, 5) + v(ilig [ ()]

where € KLL and v € K.
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ISS for Hybrid Dynamical Systems

HSD with flows 2 € F(x,w) and jumps: T € G(z,w)

Definition [Nesic¢ et al '13]. The compact set A is ISS if:

12(¢ 3)l.a < B(1I(0,0)]l.45 £, 5) + v(ilig [ ()]

where f € KLL and 7 € Ko

‘Definition. The set A is exponentially ISS (E-ISS) if:

1 ) .
2(¢, )4 < ag(e™ 2 07)||2(0,0)].4 + do sup (7))

(. J
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ISS for Hybrid Dynamical Systems

HSD with flows 2 € F(x,w) and jumps: T € G(z,w)

Definition [Nesic¢ et al '13]. The compact set A is ISS if:

12(¢ 3)l.a < B(1I(0,0)]l.45 £, 5) + 7(32%’ [ ()]

where f € KLL and 7 € Ko

‘Definition. The set A is exponentially ISS (E-ISS) if:

2(¢.3)la < ao(e™ 5 4)|2(0,0)]La + dosup (7))

(. J

[ If the set of oprimizers are E-ISS for the feedback intercon- )
nection, then the controller achieves tracking and stability )
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Technical Assumptions: Switched LTI system

As. Individual modes are exponentially stable:

AP, + P, Ay X —Qy, Py =0,Q, =0

As. Modes have common equilibrium points:

Ju,w |0 = A,z + Byu+ E,w for all o

Note: We focus switching signals for which the number of discontinuities
in every open interval (s,t) C R, satisfies [Hespanha-Morse '99] :

N(t,s) < No+ &=
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Technical Assumptions: Cost

As. The cost functions have a Lipschitz-continuous gradient:
IVh(u) = Vh(u')|| < uflu — o] IVg(y) = Vgl < bylly — ¢/l
As. Cost satisfies Polyak-t.ojasiewicz (PL) inequality:

SIVA@I? > n(f () = f(u*))
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Technical Assumptions: Cost

As. The cost functions have a Lipschitz-continuous gradient:
IVh(u) = Vh(u')|| < uflu — o] IVg(y) = Vgl < bylly — ¢/l
As. Cost satisfies Polyak-t.ojasiewicz (PL) inequality:

SIVA@I? > n(f () = f(u*))

A strongly convex function satisfies the PL inequality, but the inverse
implication does not hold. PL inequality implies invexity [Karimi et al'16]

Every u* is a global minimizer
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Tracking: Single Mode

Unknown
Disturbance

w

et = Agx + Byu + Ejw
y=Czx+ Dw
i = —Vg(u) = GTVh(y)

“ Gradient Control

E. Dall'Anese (CU Boulder) Online Optimization of Switched Systems Aug 20, 2020 16 / 23



Tracking: Single Mode

Unknown
Disturbance

et = Agx + Byu + Ejw
Plant L) y — Cx + Dw
: i = —Vg(u) — GTVh(y)

“ Gradient Controller|

Define: z = [u, z], 2* = [u*, 2|

Proposition. Suppose that the plant has a single mode. If

AQo)
44, | CNIGII1P, A7 B |

(e}

then the set {z — 2*} is E-ISS with rate by = u?/¢, c¢o = 0.

Details: ag = \/ao/a,. o = max{(l — 06)%,905\(135)}, a, = min {(1 - Ha)%, QUA(PG)}

2 —
do = YZmxe gl 1T — (20, Py A5 Bol, (1 = 00)8y IHIIGI]
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Tracking: Switched Plant

Flow: et = Agx + Byu + Ejw Jumps: gzt =2
i = —Vg(u) — GTVh(Cz + Dw) ut =u
=0 ot esS
7"6[0,1/7’61] T =7r—-1
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Tracking: Switched Plant

Flow: eod = Ao + Byu + Eyw Jumps: ¢t =2
i = —Vg(u) — GTVh(Cz + Dw) ut =u
c=0 ot eS8
7"6[0,1/7’61] Tt =71

(Theorem. Consider the interconnection above with state (2,7,0),
where zZ = z — z* is the tracking error. If

AQo)

£s < -
4ty ICING P> AT By ||

/ _
and Td > 72111 <a> ) NO € Z>0
24 a

then the set A = {0} x 8 x Te, with T := [0, Ng] x 8, is E-ISS with
parameters by = ;ﬂ/éf%, co=0—1n (%)

&

aelNoe
a

Details: ag = ,@:= maxXgyes Ao, @ = Minges a,. In(a/a) < o < 2u27y4/¢

doy = V2 maxg ||ro |l
0 = T g2
dmin{1,u?}
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Constant Disturbance: lllustrations

[ et s < age 30D (0, 0)]L4 J

ol 1T 1T 1
KL T T T 3

10! IO\\\\

107
Bound Prop. 3.1 107"
* Bound Prop. 3.2
llz = 2|l o= 2|
10 107
60 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
time time
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Tracking: lllustrations

[ 129l < a0 30D ]12(0,0) L4 + dosup,so b)) |

=1 2
T e ———— o2 | | |
= 1
0 5! ’\/\_/\_/\/
10° Bound Thm 3.3 =0 -
Iz — I )
S~ 10
10!
" \/\N\/
107! 10!
Bound Thm 3.3
R o= 2|
10 10°
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
time time
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Teaser: Hybrid Restarted Nesterov

Hybrid feedback controller inspired by Nesterov’'s accelerated gradient
eel = Asx + Byuy + E,w

= P e —

= (ug —uy)

. RU
U2 = _73 (Vh(ul) + GTVQ(:U)) u; = roul + (1 — 7”0)U2

g =1 uf =T
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Teaser: Hybrid Restarted Nesterov

Hybrid feedback controller inspired by Nesterov’'s accelerated gradient
eel = Asx + Byuy + E,w

N
U = u3(uz u1)

. KU
U2 = _73 (Vh(ul) + GTVQ(?J)) u; =rou; + (1 — ro)us

g =1 uf =T

1) Resolves the lack of robustness of accelerated methods when online
and in closed loop with dynamical system [Hauswirth et al '20]

2) Outperforms the gradient-flow controller for strongly convex costs

See our paper!
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Teaser: Hybrid Restarted Nesterov

Hybrid feedback controller inspired by Nesterov's accelerated gradient

30 -
10 = k
B Bound Thm 4.2

1 Bound Cor. 4.3
w10

e A=09

~ 10 A=

3
10 10
0 2 4 6 8 10 0 5 10 15 20 25

time time

21 /23

Online Optimization of Switched Systems Aug 20, 2020

E. Dall'Anese (CU Boulder)



Conclusions

e Work at the intersection of online optimization, control, and HDS
e E-ISS for switched LTI and costs that satisfy the PL inequality
e Under strong convexity, hybrid restarted Nesterov method
e Next steps:
- Constrained problems
- Robustness to inexact gradient information

- Connections with MPC (with J. Cortes)
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Thanks!
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