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Replacing the power system foundation

fuel & synchronous machines

= not sustainable

+ central & dispatchable generation
+ large rotational inertia as buffer

+ self-synchronize through the grid
+ resilient voltage /frequency control

— slow actuation & control

renewables & power electronics

+ sustainable

— distributed & variable generation
— almost no energy storage

= no inherent self-synchronization
= fragile voltage/frequency control

+ fast/flexible/ modular control
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e New models are needed which balance the need to inertia systems;

include key features without burdening the model .
(whether for analytical or computational work) with ~® A power converter is a fully actuated, modular, and

uneven and excessive detail: very fast control system, which are nearly antipodal

! characteristics to those of a synchronous machine.

e New stability theory which properly reflects the new Thus, one should critically reflect the control of a
devices and time-scales associated with CIG, new converter as a virtual synchronous machine; and

loads and use of storage; . L
i X L e The lack of inertia in a power system does not need to
¢ Further [computationallfwork to achieve sensitivity (and cannot) be fixed by simply “adding inertia back”

1 data-based approack in the systems.
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a key unresolved challenge: control of power converters in low-inertia grids

— industry & power community willing to explore green-field approach (see
MIGRATE) with advanced control methods & theoretical certificates
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interconnecting lines via II-models & ODEs
Rr L7 ;.

» conventional assumption: quasi-steady state algebraic model

i1 : .. . 0° : U1
= |~Yk1 - Z;‘Z:1 Ykj = “Ykn
nodal injections Laplacian matrix with y/;,; =1/ complex impedance nodal potentials
> salient feature: Ioc.a{ measurejtment o — Z kg (vk — vj)
reveals synchronizing coupling N J
local variable global synchronization

» note: quasi-steady-state assumption is flawed in low-inertia systems
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DC port modulation control  (3-phase) LC output filter AC port to power grid

» passive DC port port (iq4c, v4c) for energy balance control

— details mostly neglected today: assume v to be stiffly regulated

» modulation = lossless signal transformer (averaged)

— controlled switching voltage vaem with m € [—3,+1] x [-1,+3]

» LC filter to smoothen harmonics with R, G modeling filter/switching losses

well actuated, modular, & fast control system ~ controllable voltage source
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--Wo ok
e

7 nonlinear objectives (v}, 0; ) & stabilization of synchronous limit cycle
¢ intrinsic synchronization to w, rather than following weak grid frequency
¢ local set-points: voltage/power (v}, pi, ;) but no relative angles

¢ decentralized control: only local measurements (vy, i, ;) available

¢ fragile physics needs tight control: state constraints & negligible storage
7 no time-scale separation between slow sources & fast network

+ fully controllable voltage sources & stable linear network dynamics



Naive baseline solution: emulation of virtual inertia
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Cartoon of low-level power converter control

1. acquiring & processing
of AC measurements

cascaded ;efr?tfggi‘: 2. synthesis of references

voltage/current Y d p

tracking control (?f-' | _foorf_ o ‘how would a synchronous
virtual inertia) generator respond now ?”
P.Q4 1VI.w)

: processing
control [nociation (e.g., via PLL) track references

f DC voltage ¢ PWM AC current &“voltage assumption: no state
I} ) constraints encountered

g
t
DG voltage} [ converter ] [measureme"] 3. cascaded PI controllers to

|\

e

_ﬁ} _|EI} {E} v 4. actuationvia modulation

NV

actuation of DC source/boost

e N 5. energy balancing via fast
1 {H} {H} control of DC-side supply
DC/AC power inverter assumption: unlimited
& J

power & instantaneous
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Virtual synchronous machine = flywheel emulation

ide e reference model: detailed model of
synchronous generator + controls

® robust implementation requires tricks:
low-pass filters for dissipation, virtual
impedances for saturation, limiters,...

— most commonly accepted solution in
industry (¢ backward compatibility ?)

— poor fit: converter # flywheel

— converter: fast actuation &
no significant energy storage

— machine: slow actuation &
significant energy storage

over-parametrized & ignores limits

performs very poorly post-fault
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Droop as simplest reference model

» frequency control by mimicking p — w w
droop property of synchronous machine:
Wo
W—wy X p—p*

Wsyne

» voltage control via ¢ — ||v|| droop control:

#lvll = —er(lloll = v*) = ca(g — ¢")

® reference are generator controls

logic for sync ")

— direct control of (p,w) and (g, ||v||)
assuming they are independent
(approx. true only near steady state)

— requires tricks in implementation:
similar to virtual synchronous machine

— good small-signal but poor large
signal behavior (region of attraction)
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Original Virtual Oscillator Control (VOC)

-

. 10 g (v)
nonlinear & open limit cycle B v >
oscillator as reference model T

¢ simplified model amenable to theoretic analysis 4

— almost global synchronization & local droop 9

® in practice proven to be robust mechanism
with performance superior to droop & others

Current, 7
=)

— problem: cannot be controlled(?) to meet
specifications on amplitude & power injections

0 2
Voltage, v
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Comparison of grid-forming control

w

wo

p(t) —p°
droop control

+ good performance near steady state
— relies on decoupling & small attraction basin

synchronous machine emulation

+ backward compatible in nominal case
— not resilient under large disturbances

virtual oscillator control (VOC)

+ robust & almost globally synchronization
— cannot meet amplitude/power specifications

Lo

today: dispatchable virtual oscillator
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DG port modulation  control ~ (3-phase) LG output filter - AG port to power grid
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Experimental results

[Seo, Subotic, Johnson, Colombino, Grof3, & Dérfler, '19]
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