Optimal Capacity Design and
Operation of Energy Hub Systems

lan A. Hiskens
Vennema Professor of Engineering
Professor, Electrical Engineering and Computer Science
University of Michigan, Ann Arbor

Based on:
S. Geng, M. Vrakopoulou and I. Hiskens, “Optimal capacity design and
operation of energy hub systems”, early access Proceedings of the IEEE.

Co ] ) Workshop on Autonomous Energy Systems
MichiganEngineering NREL, Golden CO

August 19, 2020




Energy hubs

* No electricity grid connection.

« Gas supply (possibly from local storage tank).
« Renewable sources (wind, solar PV).

- Battery and hydrogen storage.

« Electrical and heat load.
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Objective

« Determine the minimum cost energy-hub capacity design while
ensuring electrical and heat loads are satisfied with high probability.

— Taking into account uncertainty in renewable generation (wind and solar) and
loads, and flexibility in storage.

— Wind generation: py = by, - DY ”.|
where f)?v Is @ normalized random scenario,
Pw 1s the wind turbine capacity.
— Similarly for solar PV.
— Load pq is not normalized.

- Capacity design can be formulated as a chance-constrained
problem:

min  J(x)
2EX CR"e

subject to Pr( max g;(2,0) <06 € A) >1—¢
j=1,....m

— 0 € A CR™ arethe random variables: renewable generation and load.
— x € X CR" are the decision variables: component capacities.
— € is a pre-defined maximal probability of violation.

MichiganEngineering

3/15



Chance-constrained optimization

« Uncertainty in generation and load results in
stochastic constraints:
— Power balance/sufficiency.

— Battery charging/discharging (through a control policy
that is dependent upon the stochastic variables). Battery Storage

« There are also a variety of deterministic constraints and non-
negativity constraints.

« The objective function is composed of the net present cost of all
the devices that form the energy hub.

e
an =

- This is a difficult problem to solve due to non-convexity.
— Integer variables describe battery charging/discharging complementarity.
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Robust reformulation

The chance-constrained problem can be solved through a
robust reformulation.

This reformulation is based on a new chance-constrained
problem:

min ||§ — &||1
subject to Pr (4 € [g,E]\a c AC R3T) >1—c¢€

which is used to construct a hyper-rectangular robust set

* % =¥
B* =[£",¢] for the random vector.
— This new problem is solved using a scenario approach.

A robust counterpart of the original chance-constrained problem
confines the random vectorto B* C A.

This can, however, give quite conservative results.
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Robust set reshaping: cutting

. 4

« The process of constructing the hyper-rectangle can capture
highly unlikely possibilities.
— Example: low renewable generation plus high load all day.

* Introduce hyperplanes to trim the unrealistic corners of the
hyper-rectangle.

A~

Ppv

Pd
MichiganEngineering

6/15



Robust set reshaping: PCA

Principal component analysis provides a coordinate transformation.

Introduce two hyperplanes for each principal component.

The intersection of the original and new hyper-rectangles gives a
much smaller (polytopic) robust set.

All the data points are still enclosed.
Less conservative. Ao
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Tractable linear program

« Battery dispatch is governed by an affine control policy.

* This enables the charge/discharge complementarity condition to
be reformulated.

* The result is a robust linear program (LP) with polytopic
uncertainty set.

* |t can be converted to a regular LP by taking the dual.
— Computationally tractable problem.

* The solution may, however, still be quite conservative.
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Iterative design method

* An iterative method is used to address conservativeness of the
chance-constrained problem.

« The (scalar) maximum load shedding parameter 7, is used to bridge
between the chance-constrained and validation sub-problems.

« Bisection and stochastic gradient algorithms have been implemented.
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Parameterization of the CC problem

« Load shedding g, parameterizes the chance-constrained
problem.
— Decreasing 7g}, tightens the problem, increases design conservativeness.
— Increasing 7, relaxes the problem, decreases design conservativeness.
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Convergence

Optimal Design
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Actual load shedding outcome

« The validation phase ensures feasibility of 100 of the 1000 scenarios.
— Ensures the true load shedding limit (25% for our example) is not exceeded.
» A posteriori evaluation of all 1000 scenarios indicated that 7 failed to
satisfy the load-shedding limit.

— This corresponds to an upper bound on the violation probability of € = 2 %.

0.25

2 02

©

[@)]

—

s

S 0.15

i

D

©

[4y]

2 0.1

£

=

£

s

£ 0.05

O 1 1 | |
0 200 400 600 800 1000
Scenarios
MichiganEngineering

T 12/15




Energy hub operation

« A two-level operating scheme has been adopted.
— Upper level: day-ahead optimal scheduling.
— Lower level: real-time model predictive control (MPC).

- Real-time realizations of renewable generation and load differ
from their day-ahead forecast.

— MPC seeks to track the reference trajectories for battery state of charge and
hydrogen storage provided by the day-ahead schedule, while minimizing
load shedding.

Day-ahead forecast trajectories of
renewable generation and load

This two-level operating
strategy has been
extended to networked

[Multi-period trajectory optimization]

energy hubs. Day-ahead reference trajectory
< Real-time
MPC for tracking the reference trajectory ] renewable and
load data
Feedback Real-time control signal
information Yy
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Conclusions

Energy hubs incorporate multiple energy carriers.
— Example: electricity, gas, heat, hydrogen.
— They form the building blocks for community-based energy grids.

Capacity design of autonomous energy hubs must take into

account the stochasticity of renewable generation and load.
— This results in a chance-constrained optimization problem.

An affine policy for battery dispatch allows a robust
reformulation of the chance-constrained problem to be
expressed as a tractable linear program.

— This may give quite conservative results.

Conservativeness can be addressed through iteration between
the robust problem and a validation problem.

Economic operation of an autonomous energy hub can be
achieved using a two-level control structure.

This two-level operating strategy extends to networks of energy
hubs.
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