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CA commitment
n 50% renewables by 2030, 100% by 2045
n 1.5M ZEV by 2025, 5M by 2030

100% clean electricity

CA Duck Curve
Oct 22, 2016

3M EV workplace charging
@10kWh/EV
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pattern that aims to even out system load throughout the day. Therefore, Shift DR is often 
scheduled to take load during times of low net load (generally during the early afternoon solar 
peak) and shed load during peak net load hours (generally during the evening, when solar 
generation is low and demand is high). This resource supports many needs of the grid, including 
(1) reducing peak load, which improves reliability and reduces need for peaking generation 
units; (2) increasing midday energy consumption, which reduces solar energy curtailment; and 
(3) decreasing afternoon ramping needs, which is accomplished by the combination of (1) and 
(2). 

The following end-use services provide the resources for Shift service types:  

�� Thermal Shift: refrigerated warehouses; air conditioning, heating and ventilation; water 
heating (boilers) 

�� Batch Process Shift: data center batch processes, waste water treatment and pumping, 
agricultural pumping 

�� Electricity Storage: batteries, electric vehicles, pumped hydroelectric storage (not 
modeled here) 

Figure 20 shows Shift strategies¶ impacts. Shift resources generally provide value by moving 
loads into midday hours to eliminate overgeneration from solar PV. 

�
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Shift service

Shimmy service

Source: 2025 CA DR Potential Study (LBNL 2017) 

Annual DR 
value

Shift service $190 / EV

Shimmy 
service

$150 / EV

@1.5M EV $50B

Assumptions: DR value from 2025 CA DR Potential 
Study (LBNL 2017); each EV drives 12K miles/year, 
needs 11kWh/day, workplace charging; 10% provide DR

Drivers twice as likely to get EV when workplace charging is available
(EDF Renewables survey Feb 2018)



100% clean electricity

CA commitment
n 50% renewables by 2030, 100% by 2045
n 1.5M ZEV by 2025, 5M by 2030

How much EVs are enough for 100% renewables?



V2G

2018 CA in-state generation: 195 TWh
n Daily generation: 534 GWh

Scenario
n Wind + solar : 50% generation (~20 days in 2018)

n Energy shortfall: 267 GWh

Storage need seems within reach
n Battery capacity of 300-mile EV: 100 kWh (Tesla 2020)

n 267 GWh  =  2.67 million EVs (18% of CA cars)

n CA mandate: 5 million ZEVs in 2030
n … all depends on aggregate flexibility



Source: https://www.iea.org/gevo2018/

At $73 / kWh, 300 GWh
only costs $22B
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Adaptive Charging Network for Electric Vehicles
George Lee1, 2, Ted Lee2, Zhi Low3, Steven H. Low2, and Christine Ortega2

1PowerFlex Systems
2Division of Engineering & Applied Science, Caltech

3Math Department, Cornell

Abstract—We describe a snapshot of an adaptive charging
network (ACN) for electric vehicles at Caltech. We overview the
system design, from the power distribution system to advanced
charger design to control and communication system and the
software system that integrates the overall network. We present
a simple mathematical formulation of the charging problem. We
have collected three months’ of baseline charging data from
the Caltech ACN. We demonstrate, by simulating a charging
algorithm on the baseline data, the large potential benefit of
ACN in saving infrastructure costs.

Keywords: Electric vehicles, adaptive charger, ACN deploy-
ment, adaptive algorithms

I. INTRODUCTION

We are at the cusp of a historic transformation of our
energy system into a more sustainable form in the coming
decades. Electrification of our transportation system will be
an important component because vehicles today consume more
than a quarter of our energy and emit more than a quarter of
our energy-related carbon dioxide. Electrification will not only
greatly reduce carbon dioxide emission, but will also have a
big impact on the future smart grid. First it is a huge load,
adding stress to the grid (an electric vehicle’s power demand
can be 3 to 20 times that of an average residential house).
Second it is an extremely flexible load hence invaluable for
integrating renewable sources, such as wind and solar power,
into our electric grid. Electric vehicle (EV) adoption, though
still low, is growing rapidly in major cities around the world.
It has grown in the United States by 8x between 2011 and
2013 [1]. California has committed to have 1.5 million zero-
emission vehicles on the road by 2025. The Chinese city
Shenzhen plans to have 100% of its taxi’s be electric by 2020.
The growth of EV depends on, and will drive, the growth
of charging stations [2], [3], [4], [5]. Indeed the number of
public charging stations in the United States has increased by
7x between 2011–2013 [1], [6].

This paper presents a snapshot of our ongoing effort to
build an adaptive charging network (ACN) at one of Caltech’s
parking garages. Phase one of our implementation is complete
and the facility has been operational since mid-February
2016; see Figure 1. It has delivered more than 30MWh or

We thank Caltech’s CI2 Grant, Resnick Institute, the Emerging Technolo-
gies Coordinating Council of Utilities, the Moxie Foundation’s FLoW Rocket
Fund, and the NSF AIR award 1602119 for financial support and Karl Fredrik
Erliksson for discussions. This work was done when George Lee, Ted Lee
and Zhi Low were visitors at Caltech. Steven H. Low is a co-founder of
PowerFlex.

100,000 miles by ealry August. The system has also been
collecting baseline charging data without adaptive algorithms.
Adaptive charging algorithms have been designed and their
performance has been evaluated through simulations using the
collected data. We explain our system design in Section II; our

Fig. 1. Initial deployment of adaptive charging network (ACN) at Caltech.

charging algorithm and its preliminary performance evaluation
in Section III. We conclude in Section IV.

II. OVERALL SYSTEM DESIGN

ACN consists of 54 level-2 EV chargers spread across two
parking levels at a Caltech garage. The power distribution
system that provides electricity from the main switch panel
for the whole garage to these chargers consists of 20,000 feet
of conduits and cables, two 150kVA three-phase transformers,
54 208V/100A breakers, and four advanced grid health meters
that we designed and implemented. The schematic diagram is
shown in Figure 2(a). Each of the two 150kVA step-down
transformers for EV charging connects the main switch panel
to the EV switch panel.

The chargers are connected to the EV switch panel at
208V/80A. They are based on an open-source implementation
of EVSE (Electric Vehicle Supply Equipment) compliant with
the SAE J1772 standard; see Figure 2(b). The OpenEVSE
board manages the high voltage (208-240V AC) portion of
the system. It controls the pilot signal according to the J1772
protocol, provides GFCI protection, signals the contactor to
close to complete the AC power circuit to the EV. Live status
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Large-Scale Adaptive Electric Vehicle Charging
Zachary J. Lee⇤, Daniel Chang⇤, Cheng Jin†, George S. Lee†, Rand Lee⇤, Ted Lee†, Steven H. Low⇤†

⇤Division of Engineering & Applied Science, Caltech, Pasadena, CA
†PowerFlex Systems, Los Altos, CA.

{zlee, slow}@caltech.edu

Abstract—Large-scale charging infrastructure will play an
important role in supporting the adoption of electric vehicles. In
this extended abstract, we describe a unique physical testbed for
large-scale, high-density EV charging research which we call the
Adaptive Charging Network (ACN). We describe the architecture
of the ACN including its hardware and software components. We
also present a practical framework for online scheduling, which
is based on model predictive control and convex optimization.
We use simulations based on real data collected from the ACN
to illustrate the trade-offs involved in accounting for non-ideal
charging behavior.

Index Terms—Electric vehicles, adaptive charging, online
scheduling, ACN deployment, intelligent infrastructure

I. CURRENT ACN TESTBED

Here we provide a snapshot of the ACN testbed as of Spring
2018, which is a significant evolution from our first report
in 2016 [1]. For a more detailed discussion of the current
ACN see [2]. Since our first report, similar systems have been
deployed around the country by a startup called PowerFlex.

A. Hardware

The Caltech ACN currently consists of 54 level-2
(208V/32A) EVSEs1 from manufactures Clipper Creek
and AeroVironment and one DC Fast Charger (DCFC)
(400V/125A) from BTCPower spread across three levels of
a Caltech parking garage. A photo of the system is shown
in Fig. 1, and the system topology is shown in Fig. 2. These
EVSEs have been modified to include a Zigbee module which
can be used for two-way communication and control. The
electrical infrastructure in this system, including transformers
and cables have been oversubscribed, meaning that without in-
telligent control, breakers protecting these components would
trip.

B. Control and Monitoring System

We have installed a dedicated industrial computer in the
parking garage for monitoring and control. This computer
runs custom software which acts as an intermediary between
databases and algorithms running in the cloud and the physical
charging hardware. Communication to individual EVSEs is
accomplished with a mesh network using the Zigbee protocol,
allowing for both control and data acquisition. Data is also

This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. 1745301, NSF
AIR-TT under Grant No. 1602119, and NSF CTT under Grant No. 1637598.

1Electric vehicle supply equipment (EVSE) is the industry standard name
for an electric vehicle charging station.

Fig. 1. Photograph of the ACN testbed.

0DLQ�6ZLWFK
3DQHO

*DUDJH�/RDGV��
�/LJKWLQJ��)DQV�
(OHYDWRUV��HWF���

(9�6ZLWFK�3DQHO

&DOWHFK�6XEVWDWLRQ

���9�����9
����$

�
ǻ�<�7UDQVIRUPHU

����N9$�����9����9

���9����9
����$�

8WLOLW\�&RPSDQ\

���N:�
����9'&�W��

W��

[�����

����$�

���$�

Fig. 2. System topology for the Caltech ACN testbed.

collected from various grid health meters in the garage.
Control signals are then passed to the EV’s on-board charger
via the J1772 standard [3].

C. Cloud Services

Data collected from the on-site sensors, user input, and
other sources are stored databases in the cloud. Scheduling
algorithms and related data analysis routines are also run in the
cloud. This simplifies development and helps ensure security
of our on-site system. Scheduling algorithms have access to
all data collected by the system via these cloud databases
and store their results in our time series database to be read
and implemented by the on-site controller. This provides a
clean interface which allows the scheduling algorithms to be
decoupled from the on-site controller. All decisions made by
the scheduling algorithm are stored for later analysis.
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Physical system 



Cyber system 

Cotrol #: Lead: Caltech PI: Low

3. An experimental platform that will allow safe, secure and reliable real-world testing of new

online algorithms on ACN along side the production algorithm. It captures all the compli-

cations of a physical system that are abstracted away in a simulation model, and demands

a higher degree of robustness in algorithm design and implementation. It lends credibility

to an algorithm and facilitates technology transfer to the marketplace.

2.3 Three compelling reasons

database'cloud'
services'

network'(IP,'cellular)'
mobile'
app'

PowerFlex'
cloud'

© 2017 PowerFlex Systems, Inc. 

PowerFlex Systems – EV Charging Solutions for Builders  

 

 
 

ACN Load Management Controller 
 
 
 

Features 

• Intel Core i5, 2.4GHz processor with 500GB SSD and 
32GB of RAM 

• Fan-less, Solid State Design 

• Cellular or Hardwired Ethernet 

• Supports wired and wireless current transformers 

• Molded fiberglass reinforced polyester enclosure 

• NEMA Type 3R, 3RX/IP 24 rated 

• Thermostat controlled heating and cooling 

• UL916 and ETL certified 
 
 
 

The PF-LMC Load Management Controller (LMC) is an intelligent 

gateway running PowerFlex¶s Adaptive Load Management firmware. 

The LMC simultaneously controls the output of each PowerFlex EV 

charging station, monitors building loads and communicates with the 

PFS Cloud Server, all in real time. 

In contrast to simple gateways that merely relay data from the chargers 

to the Cloud, the LMC aggregates and processes the data locally to 

minimize expensive network bandwidth, reduce overall system latency 

and ensure active charging sessions are not disrupted if network 

communications are lost. 

Another unique LMC feature is its ability to utilize the spare capacity of 

almost any building¶s electrical system by monitoring the major 

electrical loads and any renewable energy sources like solar and 

storage batteries*. When extra power is available it is automatically 

assigned to the drivers that need it the most. 

The PowerFlex LMC comes custom configured to meet the specific 

requirements of your charging system. Contact your PFS sales 

representative and schedule your site evaluation or visit our website at 

www.powerflexsystems.com. 

 
 
 
 

PF'local'
controller'

…'
Caltech'
garage'

proposed''
Research'Portal'

new'smart'grid'research'enabled'

data'acquisi2on'
system'

experimental'
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data8driven'
simulator'

Figure 3: Proposed ACN Research Portal and how

it builds on existing facility.

First, it will make large datasets of high-
resolution charging data as well as a data-
driven simulator publicly available for the
first time. This will allow researchers to

build detailed statistical models, perform

data analysis of real-world charging behav-

ior, and easily and fairly compare their algo-

rithms with others using simulations driven

by detailed real data. It will also provide

a live testbed for experimentation with on-

line algorithms. Second, this is a unique op-
portunity that requires the coming together
of three different parties (PI’s Lab, Power-

Flex Systems, Caltech Facilities) to pursue.

The design and development of the proposed

Research Portal involve access, and modifi-

cation, to the PowerFlex management sys-

tem and hence require a close collaboration

between PowerFlex engineers and the PI’s

Lab. This is possible only because of our

close working relationship with PowerFlex which the PI co-founded. It is also rare for a regular

parking garage to allow experiments on their production facility. This is possible only because we

have been working closely with Caltech Facilities to design, develop, operate and support ACN

for the last two years. Finally, it leverages the hard work by these three parties over the last 2+

years, funded by Caltech, DoE, NSF, etc. Finally, the PI has a track record of conceiving, building,
and deploying one-of-a-kind research infrastructures driven by the needs of his and his colleagues’

own research.

3 Team, deliverables, timeline, budget
The project team consists of:

1. Steven Low (PI), Professor, Computing & Mathematical Sciences Department, Electrical

Engineering Department, Caltech

Low will manage the overall CRI project and work closely with Caltech Facilities and the

startup PowerFlex on the design and development of the proposed infrastructure. Low’s

team will consist of graduate students as well as experienced software engineers.

2. John Onderdonk, Director, Sustainability Programs, Facilities, Caltech

Onderdonk will work with Low’s team to ensure the design, implementation and deployment

4

Garage

IP/cellular

servers databasePF cloud

Mobile app

3

i.e., EV i cannot be charged before it arrives and at or after its
deadline. It can be charged at any rate not exceeding its peak
rate ri(t) > 0 during the period t 2 {ai, ai + 1, . . . , di � 1}
with the goal of satisfying its energy demand ei before
its deadline di. In its simplest form the power network
is abstracted as a single power limit P (t) > 0 with the
interpretation that the total charging rate at any time does
not exceed P (t). A problem instance P := (ei, ai, di, ri, i =
1, . . . , N ; P (t), t = 1, . . . , T � 1) is a collection of EVs and
a power limit. A control r := (ri(t), t = 1, . . . , T � 1, i =
1, . . . , N) is a nonnegative vector of charging rates with
ri(t) := 0 for t < ai or t � di.

Consider the optimal charging problem:

OPT: min
r�0

C(r) (1a)

subject to ri(t)  ri(t) 8i, 8t (1b)X

t

ri(t) � = ei 8i (1c)

X

i

ri(t)  P (t) 8t (1d)

where C(r) is a cost function and � is the duration of each
time interval. Constraints (1b) say that EVs i can only charge
(but not discharge to the grid) and their charging rates are
upper bounded by ri at all times. Constraints (1c) say that
the energy demands ei of all EVs i are met before their
deadlines. Constraints (1d) say that the station power limit
P (t) is respected at all times.

The cost function C(r) can represent electricity cost or rev-
enue to the garage, or maximum charging delay (makespan),
or asset utilization, or system robustness, etc. For instance to
minimize cost when electricity prices change over time, e.g.,
in time-of-day pricing, let c := (c(t), t = 1, . . . , T � 1) be the
price at time t. Then the cost function can be:

C(r) :=
T�1X

t=1

c(t)
X

i

ri(t)

Another approach is to (i) encourage charging EVs as fast
as possible, and (ii) giving priority to EVs that have smaller
flexibility. The first feature can be implemented by using an
cost that is increasing in time, for each EV. For example,

C(r) :=
X

i

X

t

(t� ai) ci ri(t)

where ci are constants that measure EV i’s flexibility. The
costs (t � ai)ci for EV i increases linearly in t, encouraging
charging at higher rates at small t � ai. A choice of ci is i’s
lack of laxity on arrival defined as (assuming ri are constant
over {ai, . . . , di � 1}):

ci :=
ei

(di � ai)ri

We assume the laxity ci lies in (0, 1]. If ci = 1 then EV i’s
demand can be satisfied only if it is charged at its peak rate
ri at all t = ai, . . . , di � 1. If ci > 1 then it is infeasible
to satisfy EV i’s energy demand by its deadline. If ci > cj
then it is more important to minimize

P
t(t � aj)rj(t) than

P
t(t� ai)ri(t) and therefore the algorithm tends to allocate

higher charging rates rj(t) to EV j at smaller t.
A problem instance P is feasible if there exists a charging

rate vector r that satisfies (1b)–(1d). In that case, an offline op-
timal r⇤ exists that minimizers (1). Such a control however is
generally not implementable (non-causal) because its solution
requires information on all future EV arrivals. OPT serves as
a lower bound on the cost achievable by any online (causal)
charging algorithms.

B. Online linear program
When C(r) is a linear function, our optimization prob-

lem is a linear program. At any time t, let V (t) :=
(ei(t), di, ri(t), i = 1, . . . , N(t)) denote the set of EVs
currently in the charging infrastructure and let P (t) be the
power limit. Here di is i’s departure time and ei(t) is its
remaining energy demand at time t. Let rt := (ri(⌧), ⌧ =
t, . . . , di�1, i = 1, . . . , N(t)) denote the charging rate vector
from t onward. Consider the online optimal charging problem
at each time t:

OLP(t): min
rt�0

C(rt) (2a)

s. t. ri(⌧)  ri(⌧), 8i, 8⌧ � t (2b)
T�1X

⌧=t

ri(⌧) � = ei(t), 8i (2c)

X

i

ri(⌧)  P (⌧), 8⌧ � t (2d)

At any time t, the optimization module constructs the online
linear program OLP(t) (2) and solves for the optimal charging
rate vector rt⇤ := (r⇤i (t), . . . , r

⇤
i (T � 1), i = 1, . . . , N(t)). It

then charges EV i at rate r⇤i (t). At time t+1, with a possibly
different set of EVs due to new arrivals and departures, it
constructs a new OLP(t+1) with remaining energy demands,
and the cycle repeats.

In fact, it is not necessary to solve an online LP at every
time t because the latest LP provides the “optimal” charging
rates not only at ⌧ = t, but all subsequent periods ⌧ > t until
new EVs arrive. Therefore it suffices to solve an LP only when
EVs arrive and use its solution between EV arrivals.

If at any time t, the online LP (2) is infeasible, then it is
not possible to satisfy all remaining energy for all EVs before
their deadlines. In that case the EVs will be charged according
to Least-Laxity First: EVs with smaller laxities at that time are
charged at their peak rates until the power distribution capacity
P (t) is reached.

C. Online LP vs offline LP
Figure 4 shows the simulation of Online LP (OLP) and

Least-Laxity First (LLF) in comparison with the offline LP
for OPT. The EV data that we used are based on the 2010–
2012 dataset from [19] that provides us with about 4,000
problem instances. The number of these problem instances
that are feasible under OLP and LLF, normalized by the
number of feasible instances under offline LP (theoretical
max), are shown in Figure 4(a), as the problem flexibility

Model predictive 
control: QCQP



First deployment Feb 19, 2016

Online optimization of electric vehicle charging
n Enables mass deployment at lower capital & operating costs
n First pilot @Caltech: 54 adaptive programmable chargers
n 2x 150kVA transformers, breakers, grid sensors, etc

main 
panel

transformer
& subpanelscharger

debugging



Caltech ACN

Caltech ACN snapshot Sept 17, 2018

today’s 
energy delivered

charging station utilization power utilization

energy delivered & impact to date

peak power



Caltech ACN
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2016: 67 MWh 2017: 186 MWh 2018: 191 MWh



Caltech ACN

Caltech ACN
April 15 – Sept 18, 2018

Average Number of Sessions

Average Length of Sessions

Average Total Energy Delivered

Average Energy Delivered per Session

predictable
daily behavior



Caltech ACN

Spatial utilization snapshot (June 1 – August 31, 2018)

total
per 
day

per 
space remark

#parking spaces 53

#days (June 1 – Aug 31, 2018) 92 inc. weekends

#charging sessions 6,103 66 115 >1 session /space/day 

occupancy (space-day) 3,374 37 64 69% occupancy

energy delivered (kWh) 54,562 593 1,029 11 kWh /space/day

#hours occupied 28,407 309 536 5.8 hours /space/day



• Operational since 2016
• Delivered 1 GWh (by July 2020, CA)
• Equivalent to 3.2M miles, 1,000 tons 

of avoided CO2e

Caltech ACN

PowerFlex Systems - We Know EV Charging!

PROJECT 
DEVELOPMENT FINANCING TURN KEY EPC PROJECT 

COMMISSIONING
ASSET 

MANAGEMENT/O&M

UL-LISTED LOAD 
MANAGEMENT SYSTEM

ELECTRIC MILES 
DELIVERED SAFELY

EV CHARGING 
STATIONS DEPLOYED

| 3

Feb 2020



NREL, Golden CO

Source: PowerFlex, June 2019

PowerFlex Confidential & Proprietary

National Renewable Energy Laboratory (NREL) [120 deployed]

120 EVSEs



Bay Area high schools

Source: PowerFlex, June 2019

PowerFlex Confidential & Proprietary

Mountain View Los Altos UHSD [52 deployed]

PowerFlex Confidential & Proprietary

Los Altos SD [180 deployed]

DCFC

Onsite PV



Deployment in CA

PowerFlex deployment, Sept 2018



Adaptive charging

Caltech Jan 2018



PV charging rate
(EVSE)

Real-time tracking of PV 
generation at JPL (10/2016)

Online tracking



Duck Curve & DCM

NREL: demand charge mitigation (Nov 2018)
• Fill Duck Curve valley and maintain net load 

between 30 kW – 40 kW
• On weekdays: building load is much higher 

and much more volatile

building – PV  (weekday)

building – PV + EV

building – PV  (weekend)

Weekend Duck Curve: building load (10kW) – PV 



| 24

COVID dramatically reduce workplace EV charging

April 30, 2020



ACN research portal

•ACN-Data

•ACN-Sim

•ACN-Live (HW-in-the-loop)

Adaptive Charging Network

ACN-Data ACN-Sim

Constraints

ACN-Live

Da
ta

Control Signals

Simulation
Scenarios

Algorithm 
Validation

Lee, Li, Low. ACN-Data: analysis and applications of an open EV charging Dataset 
ACM e-Energy, June 2019

Lee, Johansson, Low. ACN-Sim: an open-source simulator for data-driven EV charging research
IEEE SmartGridComm, October 2019



ACN-Data
Caltech, JPL, Bay Area office

n 35,000+ EV charging sessions (late 2019)

n Publicly available: ev.caltech.edu
n Growing daily 85 sessions / day

Real fine-grained data for
n Modeling user behavior
n Evaluating charging algorithms
n Evaluating charging facilities
n Evaluating grid impacts



How much flexibility to users have?
LAX(i) := session

duration
minimum 

charging time-

80% of session have 
laxity > 1 hour

13

User flexibility 

laxity   :=   session duration  - min charging time

User flexibility



ACN flexibility 
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User behavior 

Figure 1

Data Records

The Data Records section should be used to explain each data record associated with this work, including the repository
where this information is stored, and to provide an overview of the data files and their formats. Each external data record
should be cited numerically in the text of this section, for example1, and included in the main reference list as described
below. A data citation should also be placed in the subsection of the Methods containing the data-collection or analytical
procedure(s) used to derive the corresponding record. Providing a direct link to the dataset may also be helpful to readers
(https://doi.org/10.6084/m9.figshare.853801).

Tables should be used to support the data records, and should clearly indicate the samples and subjects (study inputs), their
provenance, and the experimental manipulations performed on each (please see ’Tables’ below). They should also specify the
data output resulting from each data-collection or analytical step, should these form part of the archived record.

Technical Validation

This section presents any experiments or analyses that are needed to support the technical quality of the dataset. This section
may be supported by figures and tables, as needed. This is a required section; authors must present information justifying the
reliability of their data.

Outline

• Compare integral of the chargingCurrent timeseries with the energyDelivered field

• Validate that all fallback values have been flagged

• Ensure no gaps in the timeseries

• Compare distributions with existing datasets

• Compare offset from pilot determine if some stations have calibration issues???

• Compare output of ACN-Sim with these inputs to actual aggregate power draw.

3/6

avg energy:
15 kWh

ch
ar

gi
ng

 ra
te

 ~
6 

kW

Duration and energy delivered

JPL 

avg duration : 7.2 hr



Learning user behavior 

Testing Accuracy                  (9/1/18 – 11/1/18) Evaluation Set Accuracy       (12/1/18 – 5/1/19)

Gaussian mixture model



Charging curves

Caltech Oct 13, 2018

Time series: every 5-10 secs
• pilot signal from controller
• actual current drawn by EV

TABLE I
LIST OF KEY NOTATION USED IN THE PAPER.

Used ACN-Data Fields
connectionTime Time when the user plugs in
doneChargingTime Time of the last non-zero charging current
disconnectTime Time when the user unplugs
pilotSignal Time series of pilot signals
chargingCurrent Time series of actual charging currents
userID Unique identifier of the user

Clustering Parameters
N Set of n charging sessions
T Set of T charging time slots
S Set of n charging curves
Ck Cluster indexed by k (k = 1, . . . ,K)

Sequences
pi Pilot curve for session i 2 N
si Charging curve for session i 2 N
xi Charging tail for session i 2 N
ck Tail representative for cluster Ck

plication. We conclude the paper in Section V with limitations
of this work, as well as potential extensions and applications.

II. PROBLEM FORMULATION

A. ACN-Data
An ACN typically consists of tens of level-2 chargers

controlled by a local controller that communicates wirelessly
with these chargers and servers in the cloud. An ACN is
capable of real-time measurement, communication, computing
and control. It adapts EV charging currents to driver needs
as well as capacity limits of the electric system. A typical
charging session starts when a driver plugs in her EV and
informs ACN through a mobile app the amount of energy
required (in terms of miles) and her estimated departure time.
The EV will be charged until either the requested energy
is delivered, or the battery is fully charged, or the EV is
unplugged, whichever occurs first. The charging currents of all
EVs that have not finished charging are jointly optimized and
updated every minute. Every 5 to 10 seconds, a control (pilot)
signal is sent to the EV and the actual charging current drawn
by the vehicle is measured. ACN-Data contains both session
data (user’s ID, arrival time, departure time, requested energy,
and actual energy delivered) and fine-grained charging data at
seconds resolution (time series of control signals and charging
currents). Unfortunately, the current EV charging standard does
not collect batteries’ states of charge nor EV specifications.
Table I summarizes some of the available features of ACN-Data
used in this work. Note that not all sessions contain user inputs
(i.e., the last three fields of Table 1 in [6].) In this paper we
shall focus on the claimed sessions that are associated with
user inputs.

B. Charging curves
With the terminology introduced in Table I, denote by

N := {1, . . . , n} the set of charging sessions. Each charging
session refers to the charging duration from connectionTime
to disconnectTime (see Table I). Without loss of generality,

Fig. 1. An example of a charging curve (in blue) and the corresponding pilot
curve (in orange) for a charging session with userID 409 on Oct. 13, 2018.

we assume the times series of charging currents have the same
length T and time granularity (If not, we preprocess the time
series as explained in Section III-A and pad the shorter ones
with zeros). Let T := {1, . . . , T} be the set of time slots from
connectionTime to disconnectTime. In the remaining contexts,
we refer to "time series” as the raw data and "charging curves”
the sequences with equally sampled points after preprocessing
(introduced in Section III-A), unless otherwise stated. We
first define a charging curve and its associated pilot curve.
For any session i 2 N , a charging curve si 2 T is the
sequence of actual charging currents during the session i, i.e.,
si := (si(1), . . . , si(T )). For any session i 2 N , a pilot curve
pi 2 T is the sequence of control signals during the session
i, i.e., pi := (pi(1), . . . , pi(T )). At each time t 2 T , a charger
sends a pilot signal pi(t) to the vehicle which then draws
a current si(t) that is no higher than pi(t) (both si(t) and
pi(t) are in units of Amp). Given a set of n charging curves
S := {si 2 T : i 2 N} and the associated pilot curves
P := {pi 2 T : i 2 N}, the key issue considered in this
paper is: how to classify the elements of S into different groups
and implement the classification efficiently?

Typically, a charging curve from a charging session consists
of two stages – the bulk charging stage and the absorption
stage. In the bulk stage which usually occurs before the state
of charge (SoC) reaches 80% full, the charging current is
usually equal approximately to the pilot signal and the charging
voltage steadily increases. In the absorption stage, the voltage
stays approximately at its peak level and the charging currents
decreases as the battery reaches full charge. In cases when
the available time for charging is sufficiently long, a charging
session may contain an additional stage, namely the idle stage
where the charging current is closed to zero (neglecting noise).
An example of a charging curve and its associated pilot curve
is shown in Fig. 1. It can be observed that the measured
charging current does not follow the pilot signal exactly. The
gap between the pilot signal and charging current fluctuates due
to the following reasons: (1) the maximum charging current
that the vehicle can draw being smaller than the control signal;
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Fig. 6. Visualization of K = 6 clusters for MED, ED and DTW. Tails are within the same cluster if they have the same color and the tail representatives
(medoids) are emphasized.

Fig. 7. Two-dimensional visualization of our clustering results with K = 6
clusters. Tails for different users are colored differently. The clusters’ colors
are consistent with those used in Fig. 6. The marginal probabilities p1, . . . , p6
represent the portions of charging sessions falling into the six clusters.

The training data is the same as in Section IV-A and the
testing data contains 731 tails for 1441 sessions collected from
Jan. 2019 to Aug. 2019. We use the tail representatives of
the training data obtained using our framework in Fig. 3 to
predict the behavior of the charging tails of the testing data.
Denote by s a real charging curve in the testing data and
bx the estimated tail. We consider two situations – with and
without the knowledge of userID, and the results are shown in
Table II and Table III respectively. We evaluate the prediction
quality using the following three metrics. The first metric is
the coefficient of determination (R2) (generalized in our case
for comparing two sequences of different lengths) defined as:

R
2
Predict(s, bx) := min

x

⇢
1�

Pr
t=1(xt � bxt)2Pr
t=1(xt � x̄)2

�
(6)

where the minimization is over all consecutive subsequences
x of the charging curve s that have the same length as bx and

Fig. 8. Examples of the training and testing data (tails) for four users.
Sub-figures (a) and (b) are the tails of the two users with poor prediction
performance (highlighted in blue in Table II). The poor prediction performance
is due to the fact that the tails in the training data are very different from
those in the testing data. Sub-figures (c) and (d) are examples where the
tail representatives achieve high-quality prediction performance. Tails in the
training data and those in the testing data are similar.

x̄ =
Pr

t=1 xt/n and r is the length of x and bx. It ranges from
(�1, 1] and the larger the better. A negative value indicates
that performance is worse than the arithmetic mean mean. Our
second metric is the root mean square error (RMSE) that is
useful for measuring scale-dependent prediction error. The
last metric is the mean absolute error (MAE). Similar to (6),
the last two metrics are also generalized with an additional
minimization over consecutive subsequences of charging curves
in the testing data.

Table II shows the userID -based prediction results. Each tail
representative (medoid) corresponds to each group of users.
As can be observed from the results, except for user 404 and
user 651, the tail representatives of the other 14 users can well
predict the charging tail behavior in incoming sessions for the
same user. Fig. 8 visualizes the training tails, testing tails and
tail representatives of 4 users, including the two users with
high prediction error. Note that the charging tails of user 404
exhibit two distinct groups, one is from Sep. 2018 to Dec.
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Fig. 3. The classification method introduced in this paper.

3) Extraction by matching: Our third method assumes that
all charging tails from the same EV have similar properties
such as duration and shape. Before the iterative steps, suppose
that for a fixed user, we are able to obtain an initial charging
tail x(1), e.g., using the two methods above. This x(1) is used
as a “template” to extract the tails of all other charging curves
of the same user. Then, we go through the subsequences of the
charging curve that have the same length as the template, and
find a charging tail with improved noise robustness. Suppose we
obtain a tail representative x for a fixed user. For the remaining
sessions i of the same user, we minimize the Euclidean distance
dED

�
x,x(1)

i

�
over all consecutive subsequences x(1)

i of the
charging curve si that have the same length as x. In this way,
we use the three extraction rules jointly to compute the initial
tails x(1)

1 , . . . ,x(1)
n in Algorithm 1. Fig. 4 illustrates the idea

and effectiveness of this approach.
Besides speeding up the initialization, the third approach

is also used as the TE step as an approximation of the
optimization in (2). At the `-th iteration, by setting the medoid
(tail representative) c(`)k of the k-th cluster that the charging
curve xi is classified into as the template1 and using the
Euclidean distance as the distance function, we approximate
the optimization in (2) for the `-th iteration:

bx(`+1)
i = argmin

x
dED

⇣
c(`)k ,x

⌘
(4)

where the minimization is over all x 2 Xi

�
c`k

�
and Xi

�
c`k

�
is

the set containing all consecutive subsequences of the charging
curve si that have the same length as c(`)k .

1In our experiments (elaborated in Section IV), for improving efficiency, we
implement a simplified TE, wherein we focus on the medoid of the cluster that
the charging curve si for session i belongs to and remove the minimization
over k in (2). This modification does not affect the local convergence property
stated in Theorem II.1.

Fig. 4. An example of extraction by matching. The red subsequence x1 is
a template with userID 409, which is extracted from the first session s1 of
this user. The figure below visualizes the change of Euclidean distance of the
second session s2 with respect to x1. The black vertical line indicates the best
matching location in s2 for x1 and the tail x2 can be found correspondingly
despite the slight difference of both tails.

C. Tail clustering

Time series clustering is a well-studied problem; see [7]
for a review and [8] for a detailed experimental comparison.
One of the main problems considered in the literature is
determining the distance/similarity between time series. Based
on their own applications, a variety of similarity distance
metrics have been proposed, including the Euclidean distance
[9] for stock price movements clustering, the edit distance
[10] for trajectory clustering and the cross correlation [11]
for electrocardiogram time series clustering, etc. However,
most of the existing metrics require that the two sequences
have the same length. As an exception, dynamic time warping
(DTW) [12] is able to calculate the distance between two
sequences with different lengths. However, it is computationally
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Fig. 2. Architecture of ACN-Sim along with related sub-modules Signals,
Algorithms, and ACN-Data.

tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many

run()

Execute events in queue up 
to current timestep

Recompute
Schedule? Call scheduling algorithm

Send pilot signals for
current time to EVSEs

Collect actual charging rates

Simulation finished

Update state and increment 
timestep

Update stored charging 
schedule

Pass pilot signal through
EV to Battery 

EventQueue
Empty?

Yes

No

Yes

No

Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each

physical system / 
simulation models 
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tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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Figure 2.13: (a) Three-phase voltage source connected to loads in parallel. (b) Three-phase panel used to
connect loads in parallel to the voltage source.

in Figure 2.12(a). The voltage magnitude across each load is the line-to-line voltage 208V . Figure 2.13(b)
shows the electric panel arrangement to connect the loads to the voltage source. The dot in the first row
indicates that the wires numbered 1 and 2 are connected to phase a, the dot in the second row indicates
that the wires numbered 3 and 4 are connected to phase b, the dot in the third row indicates that the wires
numbered 5 and 6 are connected to phase c, and so on. Therefore the load connected between wires 1
and 3 is connected between phase a and phase b lines (see the corresponding labels on the loads in Figure
2.13(a)). Similarly for the load connected between wires 2 and 4, and other loads connected between
different phases.

We are interested in the currents J0 := (Ia0a1 , Ib0b1 , Ic0c1) supplied by the three-phase source to the loads.
Suppose the wires connecting the three-phase source to the loads are rated at Imax. Then we require that
the current magnitude in each phase be bounded by Imax:

��Ip0 p1

��  Imax, p = a,b,c (2.21)

Suppose the loads are not impedance loads, but constant current loads that draw specified currents. Let
the current drawn by the load in Figure 2.13(a) between wires 1 and 3 be Ia1b1 , that between wires 9 and
11 be Ib1c1 , that between wires 5 and 7 be Ic1a1 . In general, let the load currents in the kth three-phase load
be

Ik :=
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shows the electric panel arrangement to connect the loads to the voltage source. The dot in the first row
indicates that the wires numbered 1 and 2 are connected to phase a, the dot in the second row indicates
that the wires numbered 3 and 4 are connected to phase b, the dot in the third row indicates that the wires
numbered 5 and 6 are connected to phase c, and so on. Therefore the load connected between wires 1
and 3 is connected between phase a and phase b lines (see the corresponding labels on the loads in Figure
2.13(a)). Similarly for the load connected between wires 2 and 4, and other loads connected between
different phases.

We are interested in the currents J0 := (Ia0a1 , Ib0b1 , Ic0c1) supplied by the three-phase source to the loads.
Suppose the wires connecting the three-phase source to the loads are rated at Imax. Then we require that
the current magnitude in each phase be bounded by Imax:
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p

vuutX

i2V

�����
X

t2T
ri(t)� ei

�����

p

where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)

�����
X

i2V
Aliri(t)e

j�i

�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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p

where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)

�����
X

i2V
Aliri(t)e
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�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.

Charging model

N  EVs:  i =1,...,N
T  control intervals:  t =1,...,T
EV i :   ei,ai,di, ri( )
Power limit:  P(t)

Compute: charging rates
r := (ri (t),  i =1,...,N,  t =1,...,T )
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)

�����
X

i2V
Aliri(t)e

j�i

�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)
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Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)

�����
X

i2V
Aliri(t)e

j�i

�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p
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where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X
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Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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Fig. 2. Architecture of ACN-Sim along with related sub-modules Signals,
Algorithms, and ACN-Data.

tructure, which has not been considered in most smart
charging research.

5) We evaluate the effect that managed EV charging and
on-site solar generation will have on a distribution
feeder, using ACN-Sim and its integration with Pan-
daPower.

II. EXISTING SIMULATORS

Open-source tools and simulators have played an impor-
tant role in smart grid research community including. MAT-
POWER [11], Pandapower [9], GridLab-D [12], and OpenDSS
[13] are powerful tools for simulating the transmission and
distribution system.

There are also several simulators specific to EV charg-
ing. The most mature of these is V2G-Sim, a simulation
environment developed at LBNL [14]. V2G-Sim has been
used in many works to analyze the ability of EVs to meet
drivers mobility needs in the context of: level-1 charging
[15]; battery degradation [16]; and demand response [17].
More recently, V2G-Sim has also been used to examine grid-
level effects of smart charging such as smoothing the duck
curve [18]. Another recently proposed simulator is EVLibSim,
which models many types of EV charging, including standard
conductive charging, inductive charging, and battery swapping
[19].

While both V2G-Sim and EVLibSim allow for precomputed
charging schedules or simple control strategies, ACN-Sim is
designed explicitly around evaluating online algorithms which
adapt to changes in the system state over time. In this way,
ACN-Sim is complementary to these existing simulators as
they seek to address different questions. In addition, neither
V2G-Sim or EVLibSim consider constrained infrastructure
within a charging facility. This means these tools cannot be
used to evaluate algorithms designed to allow infrastructure
components to be oversubscribed, which is a crucial benefit
of smart charging approaches.

III. SIMULATOR ARCHITECTURE AND MODELS

ACN-Sim utilizes a modular, object-oriented architecture
which is shown in Fig. 2. This design was selected to model
physical systems as closely as possible and to make it easier
to extend the simulator for new use cases. Each of the boxes
in Fig. 2 refers to a base class which can be extended to model
new behavior or add functionality. ACN-Sim includes many

run()

Execute events in queue up 
to current timestep

Recompute
Schedule? Call scheduling algorithm

Send pilot signals for
current time to EVSEs

Collect actual charging rates

Simulation finished

Update state and increment 
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EventQueue
Empty?

Yes
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Fig. 3. Flow chart describing the simulator’s run() function. Each timestep
consists of a single iteration of this loop. The simulation ends when the last
event from the EventQueue is executed at which time the user can analyze
the results of the simulation.

of these models, but users are free to add their own models
in order to customize the simulator to meet their needs. We
encourage researchers to contribute these new models back to
the project so that others can utilize them.

A. Simulator

A Simulator object forms the base of any ACN-Sim
simulation. This Simulator holds models of the hardware
components in the simulated environment as well as a queue
of events which define when actions occur in the system.
ACN-Sim is based on a discrete-time, event-based simulation
model. Figure 3 describes its operation. During a simulation,
the Simulator stores relevant data, such as the event history,
EV history, and time series for the pilot signal and charging
current for each EVSE, for later analysis.

B. Charging Network

1) Electrical Infrastructure: Accounting for the electrical
infrastructure of the charging system, including transformers,
switch panels, and cables, is important to the design of practi-
cal EV charging algorithms. By considering these constraints,
we can oversubscribe key pieces of infrastructure, reducing
capital costs. However, this infrastructure is often three-phase
and unbalanced. To model electrical infrastructure, ACN-Sim
uses the ChargingNetwork class. ChargingNetwork
has two parts: a set of the EVSEs in the system and a
set of constraints which represents infrastructure limits. Each
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Ad-hoc growth of single-phase-connected distributed energy
resources, such as solar generation and electric vehicles, can lead
to network unbalance with negative consequences on the quality
and efficiency of electricity supply. Case-studies are presented for
a substation in Madeira, Portugal and an EV charging facility in
Pasadena, California. These case studies show that phase imbal-
ance can happen due to a large amount of distributed generation
(DG) and electric vehicle (EV) integration. We conducted stylized
load-flow analysis on a radial distribution network using an
openDSS-based simulator to understand such negative effects
of phase imbalance on neutral and phase conductor losses, and
in voltage drop/rise. We evaluate the integration of storage in
the distribution network as a possible solution for mitigating
effects caused by imbalance. We present control architectures of
storage operation for phase balancing. Numerically we show that
relatively small-sized storage (compared to unbalance magnitude)
can significantly reduce network imbalance. We identify the end
node of the feeder as the best location to install storage.

Index Terms—Energy storage, EV, DG, phase balancing.

I. INTRODUCTION

Most of the transmission and distribution of electrical en-
ergy is done in three phases. However, low voltage distribution
of electricity is often performed as if the three phase system
was a set of three independent single phase lines. In a perfect
scenario, the load on three phases with the same line length
would be completely balanced, however, in real-world, asym-
metries in each of the three phases are bound to happen due
to unbalanced loading and cable length. Network unbalance
describes a condition in a poly-phase system in which the
phasors of voltage or current are not equal in magnitude and/or
the phase angle between consecutive phasors are not all equal.
Network unbalance can have negative impacts in quality and
efficiency of electricity supply and in long term can lead to a
number of problems including thermal aging, equipment life
reduction and derating of the capacity of induction machines.

The localized injections of DG energy could cause over-
voltage problems at a localized level leading to false tripping
of circuit breakers and relays. Furthermore, intermittent RES
can cause load balancing problem [1] at central level and
also among phases [2]. Against this background, this paper
presents an empirical exploration of the effects of unbalanced
generation and load on three phase radial distribution network.
To state more concretely, we perform load-flow analysis
on a radial distribution network with unbalanced phases by
connecting single phase RES and EV loads on a 3 phase 4

wire distribution system. We explore the system unbalance
in terms of (a) line and neutral losses, (b) voltage unbalance
factor (VUF) and (c) voltage rise/drop. We observe network
unbalance is affected by: (i) the location of network where
single phase loads or generation is connected, (ii) neutral and
phase losses are more pronounced compared to VUF for a
compact radial distribution network like densely populated
cities, (iii) sparse or congested networks with significant
voltage drop can lead to substantial increase in VUF.

We provide results of two unbalance case studies, in a
substation in Madeira, Portugal, and in an EV charging facility
in Pasadena California. In the first case study we detail power
network operators’ current empirical approach for planning
customer phase allocations to reduce network unbalance. How-
ever, in spite of a careful analysis before acceptance of DG
installations and a static phase allocation, substation operators
observed imbalance in the distribution side and in some cases
are constrained to decline of new DG installations, hindering
the development of RES in Madeira. In the second case, we
observe experimentally that a majority of EVs connected to
any one phase can unbalance the three-phase network. Both
cases motivate the need to introduce storage (or load flexi-
bility) for phase balancing. We present storage based control
architectures for achieving phase balancing by compensating
active and reactive power between phases. Finally, we also
show a small size storage, compared to imbalance magnitude,
can contribute to phase balancing noticeably.

This paper is divided into 7 sections. Section II provides an
introduction of phase unbalance. Section III and Section IV we
describe case-studies for Madeira and Pasadena respectively
showing imbalances in distribution networks due to DGs
and EVs. In Section V we perform OpenDSS based radial
distribution network simulations for identifying the effect of
connecting single phase DG/EV in 3-phase system. Section VI
present storage architectures and stylized storage control for
phase balancing. Section VII concludes the paper.

II. PHASE BALANCING

A three phase system have unbalanced voltage if the rms
value of phase voltages1 are not the same and/or the phase
angle between voltage phases are not exactly 120 degrees [3],
[4]. Fortescue in 1918 developed symmetrical components for

1RMS or root mean square voltage is Vrms =
q

(V 2
a + V 2

b + V 2
c )/3.
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owned privately for performing arbitrage and phase balance
considering battery degradation. By balancing the voltage
it helps in saving energy and money by increasing motor
efficiency, transmission line capacity is better utilized, false
trigger of protective relays are avoided and also prevents
downtime due to motor failures.

Energy storage interfaced via a converter is capable of sup-
plying active and reactive power for phase balancing of three
phase network [27]. Authors in [28] use storage for mitigating
unbalance which could be caused by building integrated PV.
[29] mitigates voltage unbalance in LV distribution network
with high penetration of PV system using energy storage. The
controller minimizes the current flow in the neutral line and
experimental study indicates improved VUF.

III. CASE-STUDY : LV SUBSTATION IN MADEIRA ISLAND

This section presents a real data-based case study of phase
imbalance in context of Madeira Island in Portugal. First, an
overview of the local grid is provided, in order to give some
context to the reader. Second, the case of a specific distribution
substation in Madeira is presented, in order to motivate the
need to improved grid control through the introduction of
energy storage at the distribution station level.

A. Low Voltage Distribution Substation
The selected LV distribution substation is located in Estreito

da Calheta, one of the most south-western villages in Madeira
Island, Portugal. Madeira is a total energy island, where a
DSO/TSO is responsible for the activities related to produc-
tion, transport, distribution and commercialization of electric
energy, including private micro-generation [30].

This substation has a transformer with an apparent power
of 250 kVA, connected in delta-wye, which transforms voltage
from the transmission grid (6600 V) to the distribution grid
(400 V). The feeder capacity is of 62.5 kVA, i.e., 25% of
the transformer capacity. The daily average load is of 27 kW,
with an average off-peak power of 1 kW, and peak power of 63
kW. This substation is one of Madeira’s LV substations with
high amount of PV generation, with a total capacity of 36
kWp (14% of the feeder capacity), distributed over nine DGs,
three of which have three-phase installations (see Table II).
The distribution network is shown in Fig. 1.

The island power networks are more vulnerable to fluctua-
tions compared to mainland power networks. This is because
islands cannot have any help unlike mainland grid which can
share resources. Due to this the power utility in Madeira is
more conservative in installing new DGs in the distribution
network. In order to contain the effects of DG, DSO/TSO
encourages the DG owners to only self-consume the locally
generated renewable generation. This is done to ensure voltage
stability in the distribution network. DG injections can cause
voltage surges in sparse distribution networks. Due to this
norm, the DG growth in Madeira is hindered with average
installation in Madeira is below 0.6 kWp. With more flexible
norms, we expect the renewable generation growth in Madeira
to explore with year-round sunshine and high wind speeds. As
such, there is still a lot of room to connect new DGs and loads,

which will require additional efforts to keep the grid properly
balanced.

TABLE II: DGs at the substation, and their installed capacities.
DG kWp Branch Phases
1 5.17, 3.3, 1.95 B5 A B C
4 3.45 B3 A
5 3.45 B3 B
6 3.45 B4 C
7 5.17 B5 A
8 5.17 B5 B
9 5.17 B5 C

B. Examples of Unbalance
Fig. 1 and Table II shows the Madeira electric grid is empir-

ically balanced, i.e., the DSO/TSO relies on the experience of
the distribution team to carefully plan and manage the grid, by
always trying to do the best distribution of the installations in
each phase (thus reducing the phase unbalance occurrence),
and having the adequate extensions of the conductors (thus
avoiding voltage fluctuations and the edge of the grid).

Still, and despite the best efforts, due to the stochastic
nature of energy consumption and renewable generation, there
is still some considerable phase unbalance. For example, in
Fig. 2 we observe that while there is solar PV production,
the unbalance is stable across the three phases, which greatly
contrast to the periods without solar PV production where the
unbalance is significantly higher. Observe that the network is
nearly balanced for lightly loaded condition during the day
when solar production is maximum and the neutral current
is minimum. The network is designed to be balanced when
DG production is maximum. However, for evening peaks the
neutral is almost 100% greater compared to during solar peak
generation during the day. The plots are based on real-data
collected for a week from March 17, 2019.

Further, in Fig. 3 the reactive power imbalance is shown.
Note that the power factor and reactive power deviates signif-
icantly during the day leading to noticeable difference among
the phases. To summarize, during the day when solar is
generating, the active power among phases are more balanced
but reactive power and power factor is more unbalanced.

Against this background, it is very relevant to study the
possibility of providing improved grid control through the
introduction of energy storage at the distribution station level.

B1B2

B3

B4

B5

Fig. 1: Madeira substation with five output branches and the
nine connected DGs; yellow denotes the location of DGs
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Ultimately, the ability to coordinate active and reactive power
balances at the distribution level would represent a major step
towards safely increasing the injection of renewable energy
sources in the Madeira electric grid. Furthermore, since many
of the rural LV substations in Madeira Island share the same
characteristics (i.e., low number of consumers, and mostly
single-phase installations), there is a high replication potential
for such a solution.

IV. CASE-STUDY : EV CHARGING IN PASADENA

Phase unbalance can be an issue behind the meter, partic-
ularly in large-scale EV charging facilities such as those in
workplaces or public parking facilities. To demonstrate this,
we consider the Caltech Adaptive Charging Network (ACN)
located in a parking garage in Pasadena, CA [31]. In this
section, we first provide an overview of the charging facility,
then demonstrate how significant current unbalance can occur

due to normal charging behavior. This highlights the need
for phase balancing techniques which can account not only
for instantaneous unbalances, but also long term unbalances
caused by differences in the energy demand on each phase.

A. Electric vehicle charging

EVs are expected to dominate future transportation. Charg-
ing EV batteries can place a massive load on the local
electrical infrastructure. In Table III we list some EVs and
their battery characteristics. The batteries can either be charged
using three-phase or single-phase AC connection. In the case
of AC level-2 charging, a single-phase connection is used
by the AC/DC converter inside the EV. In the case of DC
charging, a single-phase or three-phase connection can be used
to feed an AC/DC converter outside the EV, which then feeds
DC current directly to the EV’s battery. Table IV lists the
standard single and three-phase EVSEs (charging ports) and
their rated power transfer capability. For instance, Nissan Leaf
can be completely charged within 4 hours using 1-phase 32A
charging EVSE. All charging points in Caltech ACN Testbed
are of single phase and 32A rated type.

TABLE III: EV battery characteristics [32]

EV make Warranty Battery Charge times
Nissan Leaf 8yrs./100,000 miles 30 kWh 8h at 230V AC, 15A,
Chevrolet Bolt 8yrs./100,000 miles 60 kWh 10h at 230V AC, 30A
Tesla model S 8yrs./unlimited miles 70, 90 kWh 9h with 10kW charger

TABLE IV: EV charging socket characteristics [33]

Charger type (230V AC) Rated power Time to charge 30kWh
1-� 16 A 3.7 kW 8 hours
1-� 32 A 7.4 kW 4 hours
1-� 16A/� 11kW 2h 45 min
3-� 32A/� 22 kW 1h 22 min

B. The Caltech ACN Testbed

The ACN testbed at Caltech has delivered over 846 MWh
of electricity to charge electric vehicles since early 2016. In
this study, we will consider a subset of the ACN, which
consists of 54 single-phase, level-2 EVSEs connected line-
to-line, each having a maximum charging power of 6.6 kW.
Power is supplied to the EVSEs via a three-phase network
at 208 VLL, which is provided by a 150 kVA delta-wye
transformer. Originally, the network was designed with 12
EVSEs on AB, 14 on BC, and 14 on CA. However, early
in the project, it was decided to replace two existing EVSEs,
both of which happened to be on AB, with pods of 8 EVSEs
each, resulting in 26 EVSEs on AB. This unequal allocation
of EVSEs only exacerbates the unbalances that naturally occur
due to randomness in user charging behaviors.

C. Examples of Unbalance

To demonstrate the unbalance present in the Caltech ACN,
we consider data collected from the ACN on Sept. 5, 2018

5

[34], [35]. While the ACN currently uses smart charging algo-
rithms to prevent overloads of system components, most charg-
ing facilities provide uncontrolled charging, so we present the
current unbalance for both cases. In order to simulate charging
activities and line currents within the ACN, we utilize ACN-
Sim [36]. The top panel of Fig. 4 shows the current unbalance
that results from uncontrolled charging, while the bottom panel
shows the unbalance from the smart charging algorithm used
in the actual ACN [31]. In both cases, current unbalance can
be significant, differing by as much as 280 A between lines
A and C in the uncontrolled case.

One reason for this significant unbalance is that the total
energy needed on each phase can be quite different. For
example, on Sept. 5, 2019, the total energy demand on EVSEs
on phase AB was 408 kWh, while BC was 178 kWh, and CA
was 232 kWh. Because of these unbalanced energy demands,
balancing currents requires us to distribute load not only
in time but also between phases, something smart charging
alone cannot accomplish. This shortcoming of smart charging
approaches motivates us to look for new ways to accomplish
phase balancing in large-scale charging facilities. Doing so
will allow us to increase charging capacity by better utilizing
existing infrastructure as well as reduce transformer wear
caused by current unbalance. Energy storage can be one of
the ways in which phase balancing can be performed. In the
subsequent section, we analyze the effects of phase imbalance
on power quality and losses in the network using simulations
on a radial distribution network.

Fig. 4: Current unbalance for uncontrolled EV charging (top) and
smart EV charging (bottom) at the Caltech ACN. Both plots are
simulated based on real data collected Sept. 5, 2018.

V. PHASE IMBALANCE SIMULATIONS FOR RADIAL
DISTRIBUTION NETWORK

In this section, we perform phase unbalance simulations
on a radial distribution network by connecting single phase
renewable generation and electric vehicle loads on a three
phase four wire distribution system. We identify that system
network imbalance indicators as (a) losses in the neutral, (b)
line losses and (c) VUF. We observe that effect on system
unbalance is affected by: (i) the location of network where
single phase loads or generation is connected in the network,

(ii) the effect of connecting single phase load and generation
is nearly symmetrical for VUF, however, the effect of neutral
and line losses are not symmetrical for loads and generation,
(iii) networks which are sparse or congested with significant
voltage drop could lead to significant VUF values.

The system considered is shown in Fig. 5. The nominal case
has a balanced load in each phases as we aim to understand
the variation caused due to integration of DGs/EVs in one
of the phase. We perform a sensitivity analysis by placing
different levels of RES (0%, 10%, 20%, ..., 90%, 100%, 120%
of max load in each phase) at points N1 (close to feeder) and
N5 (furtherest to feeder). In this experiment we assume the
worst-case condition where all these single phase DGs/EVs are
connected to one of the phase. For evaluation we are interested
in observing the variations of following parameters at nodes:
(a) VUF: for each node; we use International Electrotechnical
Commission definition of VUF (= the ratio of the magnitudes
of negative sequence over positive sequence) [37], (b) per-unit
voltage: for each phase at each node, (c) active power: for each
phase at each node, (d) reactive power: for each phase at each
node, (e) losses incurred in each of the phases and (f) losses
incurred in the neutral conductor.

The key observations using simulations for a radial network
shown Fig. 5 are as follows:

• VUF is not affected until the lines have significant voltage
drop due to high resistance or overloaded and/or network
is sparse with significant line losses. For a compact
network with low drop in voltage with respect to voltage
at the generation feeder in a radial distribution network,
VUF is not significant even for a large share of DGs/EVs
connected to only one phase, refer to Fig. 7. From Table I
we observe the VUF limit lies within 1-3%. For compact
network the VUF rises to less than 0.22% for 120%
(compared to phase load) of DGs/EVs connected to N1
(refer to Table V) and 0.9% for DGs/EVs connected to
N5 (refer to Table VI). However, VUF is a crucial index
for networks which are either congested and/or sparse,
refer to Table VII to Table VIII (marked in red).

• For single phase DG connected close to the feeder has
a near to uniform effect on VUF compared to DG
connected farther away which affects the distant nodes
much more than nodes closer to the feeder. Fig. 7 shows
that increase in share of DG connected at N5 almost
linearly increases the VUF.

• Contrary to prevalent notion that adding renewables helps
in reducing voltage drop if connected at distant nodes,
however, DG not balanced along the phases could reduce
the losses in a phases (note Phase A losses in Fig. 6) but
increases the losses in the neutral conductor drastically.
Thus the total losses in effect are still large for large
share of renewables. However, with increase integration
of EVs the losses increase in phase and neutral without
any ambiguity.

• The last plot of Fig. 6 shows that DGs can be designed
to reduce the total loss in the distribution network. These
results further improve if we assume DG placement to be
balanced in each phase.

• Considerable increase (almost 3 to 4 times) voltage drop
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ABSTRACT
We propose a new methodology for modeling �exibility availability
(FlexAbility) of decentralized electric loads, e.g., electric vehicle
charging, with an intuitive visualization method. The approach in-
cludes a novel method for aggregating and disaggregating �exibility
that is more accurate and less complex than existing approaches.
In addition, it is suitable for online �exibility determination and
dispatch. It is the �rst which enables to consider a total energy
constraint per individual load. We enable the determination of
guaranteed aggregated FlexAbility over a time horizon by means
of calculating �exibility dispatch paths. We then propose a method
for maximizing the bidirectional power �exibility of unidirectional
charging for generic applications in the power grid. We combine
both new methods in a simulation model of electric vehicles with
realistic mobility behavior. We are the �rst to provide an evaluation
of the bidirectional power �exibility from unidirectional charging
of electric vehicles, which is found to be bounded by the minimal
capability to decrease charging power. We show that there is a
trade-o� between power and energy �exibility. Today, 20 thousand
of the typical electric vehicles in Germany are able to keep bidirec-
tional power �exibility of at least 1.3 MW available during a whole
year. The general modeling approach is applicable for other �exible
loads with �exible pro�les and a total energy constraint as well.

CCS CONCEPTS
• Hardware → Smart grid; • Computing methodologies →
Modeling and simulation; Discrete-event simulation; •Mathematics
of computing→ Mathematical analysis.
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1 INTRODUCTION
The energy transition towards renewable energies is characterized
by an increasing share of volatile, distributed energy resources
(DERs). In order to continuously guarantee a high availability and
stability of the electrical power system (EPS), di�erent ancillary ser-
vices for frequency stability, voltage stability or congestion manage-
ment are necessary. As such �exibility services are mostly provided
by conventional power plants, novel �exibility sources are neces-
sary in order to realize the energy transition. As de�ned by [13],
�exibility in an EPS is the ability to take di�erent courses of action
at a given point in time and thereby provide a service to third par-
ties. Similarly, the authors of [5] describe �exibility as the set of all
feasible load pro�les for a given time frame.

According to the Global EV Outlook [11] electric mobility is
expanding at a rapid pace. The global EV �eet exceeded 5.1 million
in 2018 and China is the world’s largest EV market with 2.3 million
units. Also the number of EV chargers raised to an estimated 5.2
million in the same year. Forecasts in [11] show that the worldwide
EV stock will increase to 250 million electric vehicles (EVs) in 2030
based on the EV30@30 Scenario.

While the integration of EVs in the EPS is a challenge itself [15],
it is also an opportunity as an additional �exibility source. Assuming
an average battery size of 30 kWh of an EV, we obtain a total battery
capacity of up to 7.5 TWh in 2030. Undoubtedly, a large proportion
of that capacity can be used to make supply and demand more
�exible and the provision of several system services for the EPS
is possible [3, 21]. In a future EPS with a high number of mobile
battery storage systemswe need to be able to quantify and optimally
dispatch this �exibility.

For clearly de�ned goals with known data for both the mobility
behavior and the �exibility need of the application in the EPS, an
optimization of the charging power pro�les of all participating ve-
hicles is often su�cient. This way, e.g., peak shaving, renewable
optimization, minimization of carbon emissions [24] or energy ar-
bitrage [26] can be achieved without a dedicated �exibility model.
If the application is not predictable a common approach in sim-
ulations is a �exibility provision without active or with simple
rule-based �exibility management like in [22].

However, for the best use of the �exibility for ancillary services
or multi-purposes it is necessary to actively manage the �exibility
availability (FlexAbility) itself, independent from the application
in the EPS. In addition, in order to be able to o�er and monetize
�exibility in markets the �exibility needs to be predictable, available
and guaranteed over a de�ned period of time. In many cases the
�exibility is required to be guaranteed in both directions (positive
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Figure 1: FlexAbility visualization with FlexBars: a) shows the de�nition and b) to d) show examples of low energy respectively
power value and low time flexibility in a qualitative way.

Fig. 1 b) to d) show di�erent FlexBars with a low �exibility value
in a qualitative way. While both absolute and relative time �exibility
are high in b), its value for �exibility services is still low, as the
shiftable energy amount is low. Accordingly, in c) the power is low,
which also restricts its �exibility value. In d) both energy and power
value are high. However, as the time �exibility is low, its usability
for �exibility services is restricted.

3.1.3 FlexAbility Definition. As visualized in Fig. 1 b) to d), �exibil-
ity has to be observed in the three dimensions of power, energy and
time. While � quanti�es the shiftability of a load (or� the urgency),
�Ẽmax and Pmax quantify the value of the load. Thus, we de�ne the
total individual FlexAbility � (absolute or relative) in Eq. 13 with a
tuple re�ecting these three dimensions.

�rel/abs(t) =< �rel/abs(t),�Ẽmax(t), Pmax > (13)

In comparison to the related work from Sec. 2, this de�nition
enables a comparability of individual unidirectional loads in all the
three important dimensions. A de�nition for bidirectional charging
stations is possible accordingly, but out of scope here as this paper
focuses on �exibility from unidirectional charging.

3.2 FlexAbility Aggregation and
Disaggregation

In this section we use data from [12] of over 22 thousand real charg-
ing sessions for all visualizations used to explain the methodology.
For this purpose we assume these charging sessions to happen
concurrently and to have a maximum charging power of 7.4 kW
per EVSE. For the FlexAbility aggregation we di�erentiate between
the momentary �exibility availability and the �exibility availability
over a time horizon.

For the momentary aggregated snapshot of many individual
EV loads we use cumulative distribution functions (CDFs) of the
available power respectively energy as shown exemplary in Fig. 2.
All FlexAbilities are sorted based on their time �exibility and the
cumulated available power respectively energy is calculated over

Figure 2: Momentary FlexAbility aggregation snapshot via
cumulative distribution functions for t1 = 0 with an exem-
plary determination of the �exibility threshold �100(0) of
3.8 h for a momentary power consumption of 100 MW.

the time �exibility. The idea behind this is to charge EVs with a
higher urgency �rst, similar to [16]. The graphs in Fig. 2 show
the CDF of the available power in light gray and the CDF of the
available energy in dark gray. In case the aggregator wants its EV
pool to consume a certain total power (e.g., 100 MW), he calculates
the according time �exibility threshold (e.g., 3.8 h). Depending on
the preference either �rel or �abs can be used for this process. The
control signal for each individual EVSE is calculated based on the
threshold setting. This can be done centrally by the aggregator
or even by the EVSEs themselves in a decentralized way. If an EV
has a lower time �exibility than the threshold (e.g., �abs  3.8 h),
it charges at full power. Else it is not charging yet. For small EV
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Figure 7: Boxplot of the momentary negative power �exibil-
ity P

� of 20 thousand EVs for each minute in August

analysis is out of scope here. Note that what looks like thick bars
outside of the whiskers in the box plots are the outliers. The length
of the whiskers is determined according to the default value of
matplotlib [9] with 1.5 times the interquartile range.

As already mentioned in Sec. 4, Fig. 7 shows that UC never has
any availability of P�. All three other strategies free P

� mostly
between 100 and 150 MW as they manage to delay charging pro-
cesses enough. Thus, 50-LC, which does not require any central
coordination, is su�cient for an application that only requires P�.
Considering P+ in Fig. 8, it is not possible to shift the whole distribu-
tion upwards as its mean value is determined by the charging need,
which is of course identical for all strategies. In the strategies with
delayed charging, the bidirectional momentary power �exibility
over the time is upper bound by the minimum of P+ as P+ is on a
lower level than P

�. This minimum availability of P+ is maximized
by minimizing the variance of the charging power.

While the distributions of UC and 50-LC have long tails in Fig. 8,
the tails of the centralized strategies are shorter. The minimal mo-
mentary P

+ is increased considerably by the central strategies.
Strategy A has a higher variance than B as it has some days (e.g.,
the weekends) with less P+. Strategy B manages to bu�er di�er-
ences between the days but also faces di�erences between the
weeks due to its slow reaction of the damped control. Consider-
ing momentary power �exibility strategy B performs best with a
minimum P

+ of 1.7 MW. While P� is not in�uenced considerably
by the seasons, the P+ potential is in general higher in winter due
to a higher consumption. Thus, evaluating P

+ during the whole
year leads to a higher and wider spread distribution with a lower
quartile of 2.5 MW, a median of 3.1 MW and an upper quartile of
3.7 MW for strategy B. The minimal P+ for strategy B during the
whole year was 1.3 MW in our simulation, which is more than eight
times the minimal P+ for UC.

However, the decreased variance in P
+ from strategy B in com-

parison to strategy A is only possible by means of bu�ering, using
the storage capacity of the pool of EVs as seen in Fig. 6. Fig. 9 shows
the boxplot of the SOC of the EV pool during the whole year. The
central strategies both manage to keep the total SOC out of critical
regions. The variance of strategy B is higher than the variance of

Figure 8: Boxplot of the momentary positive power �exibil-
ity P

+ of 20 thousand EVs for each minute in August

Figure 9: Boxplot of the SOCs of the EV pool for eachminute
during the whole simulated year

strategy A. This means that the minimal positive and negative en-
ergy �exibility is lower for strategy B compared to strategy A. Thus,
there is a trade-o� between available power �exibility and available
energy �exibility. While a strategy focusing on a constant charging
power maximizes the minimal momentary power �exibility, it does
not achieve the same for the energy �exibility.

5 CONCLUSION
In this paper we propose and formally de�ne the new concept of
FlexAbility as the availability of �exibility in the dimensions of
time, energy and power. We propose FlexBars for the visualization
of the FlexAbility of individual loads and a novel method for aggre-
gating loads and disaggregating the aggregated model to control
signals. We de�ne �exibility threshold paths to describe and control
aggregated FlexAbility and to determine guaranteed FlexAbility
over time of a given set of loads. We apply and evaluate the concept
for EV charging. Furthermore, we propose and evaluate novel con-
trol strategies to maximize the momentary power �exibility of a
pool of EVs under uncertainty from mobility behavior. The bidirec-
tional power �exibility from unidirectional charging is bound by
the minimal load reduction potential in case of all smart charging
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inequality constraint (5c), and add a non-completion penalty
of the form:

uNC(r) := � p

vuutX

i2V

�����
X

t2T
ri(t)� ei

�����

p

where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:

0  ri(t)  r̄i(t) t  di, i 2 V (5a)
ri(t) = 0 t > di, i 2 V (5b)
X

t2T
ri(t)  ei i 2 V (5c)
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�����  clt(t) t 2 T , l 2 L (5d)

Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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uNC(r) := � p

vuutX

i2V

�����
X

t2T
ri(t)� ei

�����

p

where p � 1. This is the p-norm of the difference between
the energy delivered to each EV and its requested energy.
When p = 1, this regularizer shows no preference between
EVs. For p > 1, EVs with higher ei will be prioritized (given
more energy) over those with lower ei when it is infeasible
to meet all energy demands. Note that this regularizer is
0 whenever the energy demands of all EVs are fully met,
e.g.

P
t2T ri(t) = ei. Thus, with sufficient weight on this

component, (5c) will be tight whenever feasible. Likewise, if
(5c) would have been tight without (V-B), this regularizer has
no effect.

C. Feasible set Rk

The feasible set Rk is defined by a set of equality and
inequality constraints that can depend on k, but for notational
simplicity, we drop the subscript k. These constraints then take
the form:
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Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
use constraints (5c) to limit the total energy delivered to EV i
to at most ei. To ensure feasibility, we do not require equality
(the zero vector is always a feasible solution). This ensures that
OPT always returns a feasible schedule, which is important
in practice. We can then craft the objective function to ensure
this constraint is tight whenever possible, see Section V-B.

D. Quantization of pilot signal

The pilot signal constraints imposed by EVSEs described
in Section IV-C are discrete and intractable in general for
large problems. Because of this, we do not include (3) in
the definition of Rk, instead relaxing it to (5a). However, to
account for our non-zero rate constraint, we add an additional
constraint

ri(0) � min (⇢i(0) \ {0})

to (5).2 We denote the output of this optimization r⇤ :=
(r⇤i (t), 8i 2 V 8t 2 T ). For simplicity, we assume that the
maximum P between scheduler calls (see Algorithm 1) is set
to the length of one period, so that only the first charging rate
in r⇤ will be applied.

We then round r⇤i (0) down to the nearest value in ⇢i:

r̃i(0)  br⇤i (0)c⇢i

This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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i2V

�����
X

t2T
ri(t)� ei

�����

p
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P
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X
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Constraints (5a) ensure that the charging rate in each period
is non-negative (we do not consider V2G) and less than its
upper bound defined by the EV’s BMS and the maximum
pilot supported by the EVSE. This is a relaxation of the set of
discrete rates allowed by the EVSE and is necessary to keep
the scheduling problem convex. We discuss how to recover
a feasible discrete solution in Section V-D. Constraints (5b)
ensure that an EV does not charge after its departure time. We
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This rounding may leave unused capacity which can be
reclaimed. To reclaim this capacity, we first sort EVs in
descending order by the difference between their originally
allocated charging rate, r⇤i (0), and the rate after rounding,
r̃i(0). We then iterate over this queue and increment each
EV’s charging rate to the next highest value in ⇢i(t), if it is
feasible to do so. We continue to loop over this queue until it is
infeasible to increment any EV’s allocated rate. Here feasible
means that the resulting schedule r̃ 2 Rk.

E. Battery tail capacity reclamation

As discussed in Section IV-B, an EV’s battery management
system will sometimes limit the power draw of the battery as
it approaches 100% state-of-charge. When this happens, the
difference between the pilot signal and the vehicle’s actual
charging rate is wasted capacity. To reclaim this capacity, we
use a simple algorithm which we call rampdown. Let rki (0) be
the pilot signals sent to EV i at time k, mi(k) be its measured
charging current, and r̄ki (0) be the upper bound on its charging
rate. We define two thresholds, ✓d and ✓u. If rki (0)�mi(k) >
✓d, we can reclaim some capacity by setting the upper limit
on pilot signal of EV i for the next period to be mi(k) + �,
where � is typically around 1 A. In order to account for the
possibility of the EV’s BMS only limiting current temporarily,
if r̄ki (0) �mi(k) < ✓u, we increment the pilot signal upper
bound by � (clipping at the EV’s BMS limit or the EVSE’s
pilot limit). With this scheme, we can quickly reclaim capacity
during the tail region, while still allowing EVs to throttle back
up if this reclamation was premature. Note that in our current
implementation, the upper bound on the pilot signal, r̄ki (t) is
the same for all t within the same sub-problem k. In more
advanced rampdown schemes, this bound could depend on t
or the decision variables r(t).

VI. APPLICATIONS

We now turn our attention to applications of the Adaptive
Charging Network. We first examine the real-world opera-
tional data we have collected from the system. We then use
this data to evaluate (through simulations) how the Adaptive
Scheduling Algorithm proposed in Section V handles the
practical challenges described in Section IV. To do this, we
consider two practical objectives, charging users quickly in
highly constrained systems, and maximizing operating profits.
Due to limited space, we cannot address all possible use-cases
of ACN and the ASA framework. For additional information
about dynamic pricing and cost minimization using ACN see
[23].

2This constraint implicitly assumes that it is feasible to deliver a minimum
charging rate to each EV, thus charging infrastructure should be designed with
this constraint in mind if the operators want to ensure a minimum charging
rate to each EV.
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Pricing design

peak power

time-varying prices

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,q�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X
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ri(t) + P max
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ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
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t

ri(t) = ei, 8i (1b)

X
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Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,q�0
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Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is
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Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
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⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):
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i (t) := pt|{z}
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+
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network congestion
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+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
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ri(t) + P max
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ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
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t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
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Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is
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Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
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⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
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This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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Pricing design

Fairly (incentive compatibly) allocate system cost to EVs

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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Pricing design

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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Driver pays for each session i
• EV i pays ⇡⇤

i (t)r
⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =

max⌧
P

i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):

⇧⇤
i :=

X

t

⇡⇤
i (t) r

⇤
i (t) =

X

t

↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
i =

X

i

ei ↵
⇤
i

�
X

i

ei↵
⇤
i �

X

t,l

clt�
⇤
lt �

X

t,i

r̄i(t)�
⇤
it

= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
it

is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered

21st Power Systems Computation Conference

PSCC 2020

Porto, Portugal — June 29 – July 3, 2020

driver & time dependent

Fairly (incentive compatibly) allocate system cost to EVs
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Pricing design

Theorem

1. Demand charge:  𝑃 = ∑$ 𝛿$∗

2. Time-invariant session price 𝛼!∗:

3. Cost recovery:  

the sets T := {1, . . . , T} and N := {1, . . . , N} respectively.
Let

• EV i = 1, . . . , N be specified by (ai, di, ei, r̄i(t)) where
ai 2 T : is its arrival time, di 2 T is its departure time,
ei is its energy request. For simplicity we express energy
in kWp defined as the energy delivered by charging at 1
kW for 1 period, i.e. 1/12 kWh for 5 min period. r̄i(t)
is a possibly time-varying upper bound on the charging
rate (in A). Here r̄i(t) is assumed known and in practice
can be a limit imposed by the charger (EVSE) serving
EV i, the car’s battery management system, some other
algorithm, or a combination of these.

• pt be the possibly time-varying electricity prices (in
$/kWh) at time t 2 T that the operator pays the
local utility company for energy. For simplicity we will
implicitly convert pt into $/kWp.

• P be the demand charge defined by the utility ($/kW).
• clt be the possibly time-varying capacities of bottlenecks

l = 1, . . . , L, at time t.
• Ali be the coefficient which relates the charging rate

of EV i to the aggregate current which is bound by
bottleneck l. In the simplest case this can be 1 if EV
i is constrained by bottleneck l, 0 otherwise. In more
complex three-phase systems this could be the linearized
constraints proposed in [10]. For simulations in this paper
we use the latter.

We assume ei > 0, r̄i(t) > 0, pt > 0, P > 0, Ali � 0,
clt > 0. Given these parameters, the operator will determine
the charging rates r := (ri(t), i 2 N, t 2 T ) for every EV i
at time t.

To provide the EV charging service, the operator needs
to pay for both energy and demand charge (among other
expenses). These costs are a function of the charging rates
r:

C(r) :=
X

t

pt
X

i

ri(t) + P max
t

X

i

ri(t) (1a)

Hence the operator is interested in solving the following
minimum-cost charging problem:

Cmin := min
ri2Ri

C(r)

s. t.
X

t

ri(t) = ei, 8i (1b)

X

i

Ali ri(t)  clt, 8l, 8t (1c)

ri(t)  r̄i(t), 8i, 8t (1d)

where

Ri := {ri 2 RT : ri(t) � 0; ri(t) = 0 for t < ai or t > di}

Here (1b) ensures every EV’s energy request ei is met before
its departure time di, (1c), (1d) ensures that the capacity
limits of the network clt and charger r̄i(t) are respected. We
assume problem (1) is feasible. An optimal solution specifies
a schedule that meets all EV energy demands safely and at
minimum cost to the operator.

Introduce the auxiliary variable q that represents the daily
peak demand and convert the problem into the equivalent form:

Cmin := min
ri2Ri,s�0

X

t

pt
X

i

ri(t) + Pq (2a)

s. t.
X

t

ri(t) = ei, 8i (2b)

X

i

Ali ri(t)  clt, 8l, 8t (2c)

ri(t)  r̄i(t), 8i, 8t (2d)

q �
X

i

ri(t), 8t (2e)

Let ↵ := (↵i, 8i), � := (�lt, 8l, 8t), � := (�it, 8i, 8t), � :=
(�t, 8t) be the Lagrange multipliers for (2b), (2c), (2d) (2e)
respectively. The dual of the optimization problem (2) is

max
↵,��0

��0,��0

X

i

ei↵i �
X

t,l

clt�lt �
X

t,i

r̄i(t)�it (3a)

s. t. pt +
X

l

Ali�lt + �it + �t � ↵i 8i, 8t (3b)

P �
X

t

�t (3c)

Pricing rule. Let (r⇤, q⇤) and (↵⇤,�⇤, �⇤, �⇤) be an optimal
primal-dual solution to the minimum-cost charging problem
(2), (3). LP duality implies the following observations at
optimality.

1) Network congestion price �⇤
lt. We interpret �⇤

lt as the
congestion price at bottleneck l at time t. From (2c),
this congestion price is zero, i.e., �⇤

lt = 0, if bottleneck
l is not congested at time t, i.e.,

P
i r

⇤
i (t) < clt.

2) Charger congestion price �⇤
it. We interpret �⇤

it as the
congestion price at charger i at time t. From (2d), this
congestion price is zero, i.e., �⇤

it = 0, if EV i is charged
at lower than the peak rate allowed by the charger, i.e.,
r⇤i (t) < r̄i(t).

3) DC price �⇤t . We interpret �⇤t as the demand charge price
at time t. From (2e), the price is nonzero, i.e., �⇤t > 0,
only if the total charging rate at time t hits the daily
peak (see Theorem 1), i.e.,

P
i ri(t) = max⌧

P
i r

⇤
i (⌧).

For each EV i at each time t, define a composite price ⇡⇤
i (t):

⇡⇤
i (t) := pt|{z}

energy

+
X

l

Ali�
⇤
lt

| {z }
network congestion

+ �⇤
it|{z}

charger
congestion

+ �⇤t|{z}
demand charge

(4)

This EV-specific time-varying price ⇡⇤
i (t) incorporates the

energy price pt that the operator pays the utility, the congestion
prices �⇤

lt at all bottlenecks used by EV i, the congestion
price �⇤

it at the charger, and the demand-charge price �⇤t . It
captures the social cost that EV i is responsible for at time
t. Since pt > 0, Ali � 0 by assumption, the composite prices
⇡⇤
i (t) > 0 for all i, t.
Given the primal-dual solution pairs, the pricing rule is:
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• EV i pays ⇡⇤
i (t)r

⇤
i (t) at each time t 2 [ai, di] it charges.

• Total payment for EV i’s session is:

⇧⇤
i =

X

t

⇡⇤
i (t)r

⇤
i (t) (5)

Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
1) Decomposition of DC price P . P is decomposed into

DC price �⇤t at each time t:

P =
X

t

�⇤t

Moreover the DC price �⇤t > 0 only if
P

i r
⇤
i (t) =
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i r
⇤
i (⌧), i.e., only if the total charging rate at

time t hits the daily peak. Thus Pq⇤ =
P

t �t
P

i r
⇤
i (t).

2) Equivalent session price ↵⇤
i . EV i’s total payment satis-

fies:

⇧⇤
i := ↵⇤

i · ei

i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
Moreover ↵⇤

i > 0.
3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:

X

i

⇧⇤
i � Cmin

Proof.

1) Since ei > 0 for all i, we must have q⇤ =
maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):
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X
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i (t) r

⇤
i (t) =

X
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↵⇤
i r

⇤
i (t) = ↵⇤

i · ei

As noted above ⇧⇤
i > 0 for all i. Hence ↵⇤

i > 0 since
ei > 0 by assumption.

3) Assertion 2 implies
X

i

⇧⇤
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X
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ei ↵
⇤
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= D(↵⇤,�⇤, �⇤, �⇤) = Cmin

where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus

X

i

⇧⇤
i � Cmin =

X

t,l

clt�
⇤
lt +

X

t,i

r̄i(t)�
⇤
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is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus
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is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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Clearly the payment ⇧⇤
i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
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i per unit of energy.
Moreover ↵⇤
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3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:
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maxt

P
i r

⇤
i (t) > 0 and hence P =

P
t �

⇤
t in (3c).

2) The constraint (3b) and complementary slackness imply
that, for all t = 1, . . . , T ,

⇡⇤
i (t) � ↵⇤

i with ⇡⇤
i (t) = ↵⇤

i if r⇤i (t) > 0

This implies (using (2b)):
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where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤

i (t) � ↵⇤
i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
⇡⇤
i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤

i

is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus
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is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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i > 0 since ⇡⇤

i (t) > 0. This payment
covers energy cost, congestion rents, as well as demand charge
for which EV i is responsible. Having defined the above costs
and pricing rules, we present Theorem 1 on the consequences
of these costs and pricing rules.

Theorem 1. Suppose EV i charges at the optimal rates r⇤i :=
((r⇤i (t), t 2 [ai, di]) and pays ⇧⇤

i given in (5). Then
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i.e., the total payment of EV i is equivalent to charging
i only a time-invariant price ↵⇤

i per unit of energy.
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3) Nonnegative operator surplus. The total payment by all

EVs exceeds the total electricity cost (energy + demand
charge) that the operator pays the utility:
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where D(↵⇤,�⇤, �⇤, �⇤) is the optimal dual objective
value and the last equality follows from strong duality.

This completes the proof of the theorem.

Remark 1. 1) The equivalent session price ↵⇤
i > 0 is

the Lagrange multiplier associated with the (equality)
energy constraint (2b). This EV-specific time-invariant
energy price takes into account of energy, congestions,
and demand charge. It lower bounds the composite
prices at all times, i.e., ⇡⇤
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i , but it alone

determines the total payment ⇧⇤
i = ↵⇤

i ei. Hence, instead
of charging EV i at each time t at the time-varying price
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i (t), we can instead charge i a session price ↵⇤

i based
only on energy ei delivered. It is in this sense that ↵⇤
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is an equivalent session price for EV i.
2) Property (6) states that EV i pays a nonzero amount at

time t, i.e., r⇤i (t) > 0, only if the composite price is at
its lower bound, i.e., only if ⇡⇤

i (t) = ↵⇤
i at time t.

3) From assertion 3 of Theorem 1 the operator surplus
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is a measure of how congested the bottlenecks and the
chargers are (congestion rents). The higher the surplus
is, the more congested the system is, and the surplus
is zero if and only if no bottleneck nor charger is ever
congested (�⇤

lt = 0 and �⇤
it = 0 for all l, t). The demand

charge price �⇤t does not directly affect the site host
surplus.

Separation of pricing and control. Note that under the
pricing rule (5), EV i pays an amount

P
t ⇡

⇤
i (t) r

⇤
i (t) for its

service, even if it is not charged at rates r⇤i (t) at time t. Indeed
charging rates in practice are often determined through other
means, e.g., using an online scheduling algorithm that does
not have perfect future information or even solving a different
optimization problem that has a different objective function
and a different set of constraints. However, by using this price
structure, operators are incentivized to schedule EVs at as low
a cost as possible so that the revenue provided by users is
enough to cover their costs. If, however, the operator chooses
to determine charging schedules in some other way, the user
is indifferent so long as their energy demand is fully met.

B. Pricing with onsite solar

Onsite solar generation can be used to reduce both the
environmental footprint and overall cost of an EV charging
system. However fairly distributing this savings and incentiviz-
ing drivers to provide enough flexibility so that the system can
charge their vehicles using solar generation can be challenging.
We can easily modify our pricing scheme to account for solar
generation by introducing two additional variables rgi (t) and
rsi (t) such that ri(t) = rgi (t) + rsi (t). We can interpret rgi (t)
to the the portion of EV i’s charging rate which was delivered
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Offline optimal pricing

At end of month

n Compute ex post session price 𝛼!∗

n Driver pays: ∑! 𝛼!∗𝑒!

No uncertainty nor need for forecast



ACN research portal

ev.caltech.eduzlee@caltech.edu
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