Adaptive Charging Network Research Portal

Zachery J. Lee

Sunash Sharma

Tongxin Li

John Pang

Steven Low

NRELAEG Workshop August 2020

G. Lee

C. Jin

T. Lee

D. Lee

Caltech

Z. Lee

S. Low

S. Sharma

C. Ortega

D. Chang

R. Lee

J. Pang

Z. Low, Cornell K. Erliksson, Lund

D. Johansson, Lund

and many others ...

Motivation: workplace charging

Caltech adaptive charging network (ACN)

Testbed to commercial deployment

ACN Research Portal

- ACN Data, Sim, Live
- Example applications

Pricing demand charge

CA commitment

- 50% renewables by 2030, 100% by 2045
- 1.5M ZEV by 2025, 5M by 2030

	Annual DR value
Shift service	\$190 / EV
Shimmy service	\$150 / EV
@1.5M EV	\$50B

Assumptions: DR value from 2025 CA DR Potential Study (LBNL 2017); each EV drives 12K miles/year, needs 11kWh/day, workplace charging; 10% provide DR

Source: 2025 CA DR Potential Study (LBNL 2017)

Drivers twice as likely to get EV when workplace charging is available

(EDF Renewables survey Feb 2018)

CA commitment

- 50% renewables by 2030, 100% by 2045
- 1.5M ZEV by 2025, 5M by 2030

How much EVs are enough for 100% renewables?

2018 CA in-state generation: 195 TWh

Daily generation: 534 GWh

Scenario

- Wind + solar : 50% generation (~20 days in 2018)
- Energy shortfall: 267 GWh

Storage need seems within reach

- Battery capacity of 300-mile EV: 100 kWh (Tesla 2020)
- **267 GWh = 2.67 million EVs**(18% of CA cars)
- CA mandate: 5 million ZEVs in 2030
- ... all depends on aggregate flexibility

Source: Bloomberg New Energy Finance

Motivation: workplace charging

Caltech adaptive charging network (ACN)

Testbed to commercial deployment

ACN Research Portal

- ACN Data, Sim, Live
- Example applications

Pricing demand charge

2016 GlobalSIP Conference:

Adaptive Charging Network for Electric Vehicles

George Lee^{1, 2}, Ted Lee², Zhi Low³, Steven H. Low², and Christine Ortega²

¹PowerFlex Systems ²Division of Engineering & Applied Science, Caltech ³Math Department, Cornell

2018 SmartGridComm Conference:

Large-Scale Adaptive Electric Vehicle Charging

Zachary J. Lee^{*}, Daniel Chang^{*}, Cheng Jin[†], George S. Lee[†], Rand Lee^{*}, Ted Lee[†], Steven H. Low^{*†} ^{*}Division of Engineering & Applied Science, Caltech, Pasadena, CA [†]PowerFlex Systems, Los Altos, CA. {zlee, slow}@caltech.edu

First deployment Feb 19, 2016

Online optimization of electric vehicle charging

- Enables mass deployment at lower capital & operating costs
- First pilot @Caltech: 54 adaptive programmable chargers
- 2x 150kVA transformers, breakers, grid sensors, etc

energy delivered & impact to date

Caltech ACN snapshot Sept 17, 2018

predictable daily behavior

Caltech ACN April 15 – Sept 18, 2018

Spatial utilization snapshot (June 1 – August 31, 2018)

	total	per day	per space	remark
<pre>#parking spaces</pre>	53			
#days (June 1 – Aug 31, 2018)	92			inc. weekends
#charging sessions	6,103	66	115	>1 session /space/day
OCCUPANCY (space-day)	3,374	37	64	69% occupancy
energy delivered (kWh)	54,562	593	1,029	11 kWh /space/day
#hours occupied	28,407	309	536	5.8 hours /space/day

- Operational since 2016
- Delivered 1 GWh (by July 2020, CA)
- Equivalent to 3.2M miles, 1,000 tons of avoided CO2e

Source: PowerFlex, June 2019

Caltech Jan 2018

Real-time tracking of PV generation at JPL (10/2016)

NREL: demand charge mitigation (Nov 2018)

- Fill Duck Curve valley and maintain net load between 30 kW – 40 kW
- On weekdays: building load is much higher and much more volatile

Weekend Duck Curve: building load (10kW) - PV

COVID dramatically reduce workplace EV charging

Lee, Li, Low. ACN-Data: analysis and applications of an open EV charging Dataset ACM e-Energy, June 2019

Lee, Johansson, Low. ACN-Sim: an open-source simulator for data-driven EV charging research IEEE SmartGridComm, October 2019

Caltech, JPL, Bay Area office

- 35,000+ EV charging sessions (late 2019)
- Publicly available: ev.caltech.edu
- Growing daily 85 sessions / day

Real fine-grained data for

- Modeling user behavior
- Evaluating charging algorithms
- Evaluating charging facilities
- Evaluating grid impacts

User flexibility

lt

laxity := session duration - min charging time

Duration and energy delivered

Gaussian mixture model

Time series: every 5-10 secs

- pilot signal from controller
- actual current drawn by EV

Learning charging curves

Goal: learn representative battery behaviors

Only small # of batteries used by small # drivers underlying 35,000 charging curves

Challenges: do not know SoC

- Can only characterize tail behavior (absorption stage)
- Charging optimization, BMS actions, missing & noisy data

need to

- extract charging tails
- cluster charging tails

Chenxi Sun, Tongxin Li, S. H. Low and Victor Li. Classification of EV charging time series with selective clustering PSCC July 2020

Learning charging curves

Chenxi Sun, Tongxin Li, S. H. Low and Victor Li. Classification of EV charging time series with selective clustering PSCC July 2020

	ev.caltech.edu		Caltec
		DOWNLOAD	
		3039	
		Sessions Found:	
		5	
		Minimum Energy (kWh)	
ACN-Sim		06/20/2019 9:58 AM	
Python Client		То	
API		From 01/01/2019 12:00 AM	m
vveb mierrace		Caltech	
\//ab latarfaca			

Site

Charging Network		
EVSE		
EV	Constraints	
Battery		

physical system / simulation models

physical system / simulation models

integrated with ACN-Data

How can large-scale EV charging mitigate Duck Curve ?

SI

₹) ⊟ 9) ⊟⊔ 11 10 11 10

S ت 1

$$\begin{array}{c|c} \mathsf{MPC} \\ \hline max \\ r \\ v \\ \mathsf{v} \\ \mathsf{v$$

Minimize evening ramp based on real data

- EV data from ACN-Data
- Simulation models from ACN-Sim
- CAISO solar and load data

Towards Phase Balancing using Energy Storage

Md Umar Hashmi¹, José Horta², Lucas Pereira³, Zachary Lee⁴, Ana Bušić¹, and Daniel Kofman² ¹ INRIA and the Computer Science Dept. of Ecole Normale Supérieure, CNRS, PSL Research University, Paris, France ² Laboratory of Information, Networking and Communication Sciences, Télécom ParisTech, Paris, France ³ ITI, LARSyS, Técnico Lisboa and prsma.com, Funchal, Portugal ⁴Electrical Engineering Department, California Institute of Technology, Passdena, CA, USA

arXiv 2020

Use ACN-Data and ACN-Sim, and real substation data in Portugal, to study phase imbalance and mitigation strategy using storage

FlexAbility - Modeling and Maximizing the Bidirectional Flexibility Availability of Unidirectional Charging of Large Pools of Electric Vehicles

Jonas Schlund	Marco Pruckner	Reinhard German	
jonas.schlund@fau.de	marco.pruckner@fau.de	reinhard.german@fau.de	
Friedrich-Alexander-University	Friedrich-Alexander-University	Friedrich-Alexander-University	
Erlangen, Germany	Erlangen, Germany	Erlangen, Germany	ACN

ACM e-Energy 2020

Use ACN-Data in its modeling and optimization of aggregate flexibility of distributed loads, showing tradeoff between energy & power flexibility

Adaptive Control of Plug-in Electric Vehicle Charging with **Reinforcement Learning**

Authors:

🤱 Abdullah Al Zishan, 🔔 Moosa Moghimi Haji, 📻 Omid Ardakanian

ACM e-Energy 2020

Use ACN-Sim to study application of reinforcement learning to optimize decentralized EV charging algorithm

Motivation: workplace charging

Caltech adaptive charging network (ACN)

Testbed to commercial deployment

ACN Research Portal

- ACN Data, Sim, Live
- Example applications

Pricing demand charge

Z. Lee, J. Pang and S. H. Low. Pricing EV charging service with demand charge, PSCC 2020

Model predictive control:

Charging design: charging

- Must adapt to system state in real time
- Objectives must be customized for site hosts

Pricing design: recover individual EV's cost of

- Energy
- Externality: system peak (demand charge)
- Externality: infrastructure congestion

Key idea: decouple charging and pricing

- Drivers receive energy in time, at minimum payments
- Charging is socially optimized by MPC
- Site host fully recovers electricity cost

start with conclusion ...

At end of month

- Compute ex post session price α_i^*
- Driver pays: $\sum_i \alpha_i^* e_i$

sum over driver's energy delivered sessions

in session *i*

What is min system cost to meet demand?

How to fairly allocate system cost to drivers ?

$$C(r) := \sum_{t} p_t \sum_{i} r_i(t) + P \max_{t} \sum_{i} r_i(t)$$

Pricing min system cost:

$$\begin{split} C^{\min} &:= \min \qquad \sum_{t} p_{t} \sum_{i} r_{i}(t) \ + \ Pq \\ \text{s. t.} \qquad \sum_{t} r_{i}(t) \ = \ e_{i}, \qquad \text{meet demand} \qquad \alpha_{i} \\ &\sum_{t} A_{li} r_{i}(t) \ \leq \ c_{lt} \quad \inf_{\text{capacity limit}} \qquad \beta_{lt} \\ &r_{i}(t) \le \bar{r}_{i}(t), \qquad \text{EVSE limit} \qquad \gamma_{it} \\ &q \ \geq \ \sum_{i} r_{i}(t), \qquad \text{system peak} \qquad \delta_{t} \end{split}$$

Fairly (incentive compatibly) allocate system cost to EVs

$$\pi_i^*(t) := \underbrace{p_t}_{\text{energy}} + \underbrace{time-varying}_{\text{prices}}$$

Fairly (incentive compatibly) allocate system cost to EVs

Driver pays for each session *i*

$$\Pi_i^* = \sum_t \pi_i^*(t) r_i^*(t)$$

this achieves pricing goals

Design principle:
$$\pi_{i}^{*}(t) := \underbrace{p_{t}}_{\text{energy}} + \underbrace{\sum_{l} A_{li} \beta_{lt}^{*}}_{\text{network congestion}} + \underbrace{\gamma_{it}^{*}}_{\text{charger congestion}} + \underbrace{\delta_{t}^{*}}_{\text{demand charge}}$$
$$\Pi_{i}^{*} = \sum_{t} \pi_{i}^{*}(t) r_{i}^{*}(t)$$

Theorem

- 1. Demand charge: $P = \sum_t \delta_t^*$ EVs that cause peak will pay
- 2. Time-invariant session price α_i^* : $\Pi_i^* := \alpha_i^* \cdot e_i$

3. Cost recovery:
$$\sum_{i} \Pi_{i}^{*} \geq C^{min}$$
$$\sum_{i} \Pi_{i}^{*} - C^{min} = \sum_{t,l} c_{lt} \beta_{lt}^{*} + \sum_{t,i} \bar{r}_{i}(t) \gamma_{it}^{*}$$

[Lee, Pang, Low. PSCC 2020]

At end of month

- Compute ex post session price α_i^*
- Driver pays: $\sum_i \alpha_i^* e_i$

No uncertainty nor need for forecast

Adaptive Charging Network

HOME INFO RESEARCH DATA SIMULATOR ACCOUNT

The Adaptive Charging Network

Accelerating Electric Vehicle Research @ Caltech and Beyond

zlee@caltech.edu

ev.caltech.edu