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Simons Institute Programs

2018 tutorial on RL
https://www.youtube.com/watch?v=dhEF5pfYmvc

Theory of Reinforcement Learning, Aug. 19–Dec. 18, 2020
https://simons.berkeley.edu/programs/rl20
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This talk:
[4] P. G. Mehta and S. P. Meyn. Convex Q-learning. ArXiv e-prints:2008.03559, 2020.

Background:
[3] P. G. Mehta and S. P. Meyn. Q-learning and Pontryagin’s minimum principle. CDC, 2009.
[5] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. Mehta, and S. Meyn. Optimal rate
of convergence for quasi-stochastic approximation. arXiv:1903.07228, 2019.
[6] A. Bernstein, Y. Chen, M. Colombino, E. Dall’Anese, P. G. Mehta, and S. Meyn. Quasi-
stochastic approximation and off-policy reinforcement learning. CDC, 2019.

[7] A. M. Devraj, A. Bušić, and S. Meyn. Fundamental design principles for reinforcement learning
algorithms. In Handbook on Reinforcement Learning and Control. Springer, 2020.
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Advertising

Reinforcement Learning & Control

Theory of Reinforcement Learning
August 19 – December 18, 2020

Tutorials and surveys available in real time
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Q Crash Course



What Is Q? Propaganda

Reinforcement Learning

Reinforcement learning (RL) is an area of
machine learning concerned with how software
agents ought to take actions in an environment
so as to maximize some notion of cumulative
reward –Wikipedia

Examples relevant to me and NREL

Optimizing windfarms

Smart Grids

Smart Buildings
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Reinforcement learning (RL) is an area of
machine learning concerned with how software
agents ought to take actions in an environment
so as to maximize some notion of cumulative
reward –Wikipedia

Examples relevant to me and NREL

Optimizing windfarms

Smart Grids

Smart Buildings

RL is an emerging science, evolving alongside decision and control theory:
“...as RL algorithms are increasingly and more aggressively deployed in safety
critical settings, control theorists must be part of the conversation” [22]
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What Is Q? Example: climb up a hill

Dynamic Programming and RL Xk+1 = F(Xk, Uk)

Example from gym.openai.com: get up the hill efficiently

State: Xk denotes position and velocity (why?)
Input (or action): Uk is force

Value function: J?(x) = min
actions

τ∑
k=0

c(Xk, Uk)

DP eqn: J?(X0) = min
U0

Recall Bellman or Bellman-Ford

Q-learning is all about approximating Q?

If we know Q?, we obtain U∗k = φ∗(Xk)
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What Is Q? Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation
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ṁSA

Zone

Fan
TSA

WSA
TCA

WCA
TMA

WMA
TOA

WOA

Outdoor
air

Mixed
air

Conditioned
air

Supply
air
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Five dimensional state space and four dimensional input space

Joint work with N. S. Raman, P. Barooah @ UF MAE, A. Devraj @ Stanford

See final page of references, and bibliography of [17]
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What Is Q? Example: heating and ventilation in a Florida office building

Control Design for Heating and Ventilation

Input: Uk := [msa(k), roa(k), Tca(k), Tsa(k)]T

1 Supply air flow rate (msa)

2 Outdoor air ratio (roa)

3 Conditioned air temperature (Tca)

4 Supply air temperature (Tsa)

State: Xk := [Tz(k),Wz(k), Toa(k),Woa(k), U(k − 1)]T

1 Zone air temperature (Tz)

2 Zone air humidity ratio (Wz)

3 Outdoor air temperature (Toa)

4 Outdoor air humidity ratio (Woa)

5 Control inputs from the previous time step

6 ... forecast of occupancy, weather, ...

Quadratic basis: + Zap Q-learning

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ

=
∑
i

θiψi(x, u)

Initial results are great ...

Return air
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What Is Q? Example: heating and ventilation in a Florida office building

Close Loop Response: Temperature and humidity evolution
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Goal: Maintain temperature / humidity, and minimize energy consumption

Inputs: Air-flow rate, out-door air ratio, conditioned air temperature, supply
air temperature

Approach: Find θ∗ with quadratic basis:

Qθ(x, u) = (x, u)TMθ(x, u) + (x, u)TLθ + kθ
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What Is Q? How to approximate Q??

From DP to Q-learning Xk+1 = F(Xk, Uk)

DP eqn: J?(X0) = min
U0

{c(X0, U0) + J?(X1)︸ ︷︷ ︸
Q?(X0,U0)

}

Magic: Denote Q?(x) = minuQ
?(x, u) = J?(x)

=⇒ Fixed point equation for Q-function

Q?(x, u) = c(x, u) + J?(F(x, u)) = c(x, u) +Q?(F(x, u))

Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)
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Choose approximation among {Qθ(x, u) : θ ∈ Rd}

Bellman error: Eθ(x, u) = −Qθ(x, u) + c(x, u) +Qθ(F(x, u))

For example, θi is a “weight” in a neural network, or

Qθ(x, u) =
∑
i

θiψi(x, u)
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What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning
A generalization of Watkins’ algorithm [25, 7, 1]

Model Free Error Representation:

Eθ(Xk, Uk) = −Qθ(Xk, Uk) + c(Xk, Uk) +Qθ(Xk+1)

Goal: Find roots of

f̄(θ∗) = 0 Why?

f̄(θ) = E∞[ζθEθ(X,U)] = lim
T→∞

1

T

T−1∑
k=0

ζθkEθ(Xk, Uk)

Eligibility vector: ζθk = ∇θQθ(Xk, Uk)

Design principle:
Step 1: consider an ODE: d

dtθt = −Gtf̄(θt) (matrix gain part of design)
Step 2: translate to a discrete time algorithm based on measurements.
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What Is Q? How to approximate Q??

Q(0) Learning and Deep Q-Learning

f̄(θ) = lim
1

T

T−1∑
k=0

ζθkEθ(Xk, Uk) f̄(θ∗) = 0 Why?

Troubles with Q: Slow! Does a root exist? Does it have significance?

Batch algorithms to the rescue? [18, 19, 20, 21]

DQN θn+1 = arg min
θ

{
En(θ) +

1

αn+1
‖θ − θn‖2

}
En(θ) =

1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) +Qθn(Xk+1)

]2
With a linear parameterization, this is a quadratic program!

Sadly,
ODE approximation for DQN ≡ Q(0) Learning

Even for neural network function approximation [M&M, 2020]
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6-State Path Finding Problem: One Million Iterations

Convex Q-Learning



Convex Q-Learning Every DP is a QP

Every DP is an LP
Every control student knows this, starting with [Manne, 1960]

Proposition: [Subject to mild assumptions]

J? solves the following LP:

max
J
〈µ, J〉

s.t. J(x) ≤ c(x, u) + J(F(x, u)) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Applications to ADP in the thesis of de Farias (with BVR) [8, 9]

One way to derive the SDP representation of LQR [Boyd et al]

Applications in deterministic control every day
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max
J,Q

〈µ, J〉

s.t. Q(x, u) ≤ c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

µ a probability measure on X (given)

Over-parameterization for RL more recent.

Motivation: Q(Xk, Uk) ≤ c(Xk, Uk) + J(Xk+1) (observed)
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Convex Q-Learning Every DP is a QP

Every DP is a QP

Proposition: [Subject to mild assumptions]

The pair (J?, Q?) solve the following QP:

min
J,Q

− 〈µ, J〉+ κ〈ν, E2〉

s.t. 0 ≤ E(x, u) :=−Q(x, u) + c(x, u) + J(F(x, u))

Q(x, u) ≥ J(x) , x ∈ X , u ∈ U(x)

J is continuous, and J(xe) = 0.

ν a probability measure on X× U

The objective and constraints can be observed, without a model
=⇒ Long list of possible RL approximations
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min
θ
− 〈µ, Jθ〉+ κ〈ν, E(θ)2〉

s.t. 0 ≤ −Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

=⇒ zn(θ) ≥ 0

Qθ(x, u) ≥ Jθ(x) ⇐= Enforce through function architecture

zn(θ) =
1

rn

Tn+1−1∑
k=Tn

[
−Qθ(Xk, Uk) + c(Xk, Uk) + Jθ(Xk+1)

]
ζ+
k

Convex Q Version 1.0

θn+1 = arg min
θ∈Θ

{
−〈µ, Jθ〉+ κĒ2

n(θ)− λT
nzn(θ) +

1

αn+1

1
2‖θ − θn‖2

}
λn+1 =

[
λn − αn+1zn(θn)

]
+
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algorithms that provably convergent, and for which we know what problem
we are actually solving!

Extensions to stochastic control – not a big deal

Much more work is required to develop these algorithms for particular
applications, and to improve efficiency

Extensions to Convex Policy Gradient algorithms are expected soon!

Thank you!
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