
Autonomous Energy Systems: Transportation

Brennan Borlaug, Kalpesh Chaudhari, Rob Fitzgerald, Venu Garikapati, 
Yanbo Ge, Matt Moniot, Clement Rames, Nick Reinicke, Jinghui Wang, Eric Wood



NREL    |    2

• Overview of two research areas related to transportation and grid impacts
– Learned ride-hailing fleet control, load management
– Consensus charging overview

Presentation Overview
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• Overview of two research areas related to transportation and grid impacts
– Learned ride-hailing fleet control, load management
– Consensus charging overview

• Integration into broader AES simulation framework

Presentation Overview



Ride Hailing Modeling, Managed Loads
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Model Overview, Inputs and Outputs

• Battery size
• Fleet size
• Occupancy, etc.

• Station power levels
• Locations, plugs, etc.

• O-D locations
• Pickup times

• Passenger 
pooling 
willingness

• $/kWh by TOD
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Model Overview, Inputs and Outputs

• Battery size
• Fleet size
• Occupancy, etc.

• Station power levels
• Locations, plugs, etc.

• O-D locations
• Pickup times

• Passenger 
pooling 
willingness

Broad Outputs:
• Vehicle utilization
• Fleet performance
• Station economics
• … and many more!

• $/kWh by TOD

Highly Integrated 
Vehicle Ecosystem
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Trip Demand:
Ride Austin TNC Data

Animation Web link

Fleet Visualization (Austin, TX)

https://i.imgur.com/4UpXQjH.gifv





HIVE 0.4.0+ Model Structure
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Data-Driven Fleet Control

• Version: 0.1.0, heuristic based decision making
• Version: 0.4.0: Refactored HIVE in an “RL gym” to enable model training
• Exploring opportunities for improved performance beyond heuristics
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Sample Scenario, Downtown Chicago

• Requests: Two days of request data - one for training, one for test
• Fleet: 350 fleet vehicles with 50 kwh battery
• Infrastructure 4 fast charging stations, 1 base with slow charging
• Charging Costs: variable by time of day, based on data from ComEd
• Forecasting: perfect for upcoming prices and requests
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Results, RL-Trained Fleet Manager

N training steps
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Results, RL-Trained Fleet Manager, cont.
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Future Work, HIVE

• Extended study over 10+ days of request data
• Expose fleet manager to more complicated rate structures 

(demand charges)
• Simulate more constrained scenarios – limited infrastructure, 

larger geographic area
• Expand scope of state/action space to include control of more 

than just charging
– Fleet rebalancing



Consensus Charge Control
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Background – Typical Control Hierarchies

Centralized 
data acquisition 

from vehicles

Optimized charge 
profiles passed to 

EVs from 
centralized node

A) No Control B) Centralized Control

All vehicles permitted to 
charge as demanded

Node

AES Simulation Framework

Node

AES Simulation Framework

Node

AES Simulation Framework
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Proposed: Consensus-Based Control

C) Consensus-based Distributed Control
Rather than communicating with a centralized node, vehicles communicate amongst 
each other to develop a charging profile through consensus

Step 1: Communication among EVs Step 2: Aggregate optimized charge 
profiles from individual EVs

EV

EV

EV

Pev,i

Pev,i Pev,i

EV

EVEV

EVSE

Pev,i Pev,i

Pev,i

Node objective

Pev,i - Charging profile for each EV
= min. Pev,iWhere,
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Consensus Control – Deeper Dive

Plim = Grid supply/capacity constraint

Pcs,iPcs,i

Pcs,i

EVSE

EVSEEVSE
PaggPcs,i Pcs,i

Pcs,i

EVSE

EVSE

EVSE

Step 3: Communication among 
Charging Stations

Step 4: Aggregate optimized load profile
from individual charging stations 

Step 5: If Pagg<= Plim, Stop. Else, repeat.

Node objective

Pcs,i – Aggregated load profile at charging station

= min. Pcs,iWhere,

C) Consensus-based Distributed Control
In addition to vehicles communicating amongst each other to optimize profiles at the station-level, 
additional communication amongst stations to consider grid supply / capacity

AES Simulation Framework
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Consensus Control: Parameters Assumed

Focus: Demand charge mitigation, by flattening the charging profile
Parameters:

– EVi is the vector specified by (ai, di, ei, Pmax,i)
– ai is the arrival time of EVi.
– di is the departure time of EVi.
– ei is the charging energy demand of EVi. ei (t) =0 if t < ai or t≥di

– Pmax,i is the peak charging rate of EVi.
– ri(t) is the instantaneous charging rate of EVi. ri (t) =0 if t<ai or t≥di.

– Pcs (t) is the instantaneous aggregated power at charging station

Approach: ADMM based distributed control
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Consensus Control: Performance Evaluation, cont.
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Consensus Control: Performance Evaluation, cont.
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Consensus Control: Performance Evaluation, cont.
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Transportation Topics, AES Simulation Framework
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Load Shifting Strategy, Comparison

HIVE: “Plug” control
• HIVE has no formal charge control, but can load 

shift by controlling when vehicles are sent to charge
• Fleetwide charging peaks are controlled through 

strategic dispatch & charge instructions
• Main incentive is to recharge vehicles quickly so 

additional passengers may be served

Time of Day

Ch
ar

ge
 L

oa
d

No grid feedback, static decision-making
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Load Shifting Strategy, Comparison

HIVE: “Plug” control
• HIVE has no formal charge control, but can load 

shift by controlling when vehicles are sent to charge
• Fleetwide charging peaks are controlled through 

strategic dispatch & charge instructions
• Main incentive is to recharge vehicles quickly so 

additional passengers may be served

Consensus: “Charge” control
• Consensus control can affect the charging rate during an 

event, but has no control over plug-in / plug-out times
• Charging peaks are controlled within the confines of a 

dwell. Greater dwell time correlated with greater flexibility
• Likely to be best integrated at fleet depots where vehicles 

have long overnight stays
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No grid feedback, static decision-making Direct integration with AES framework
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Proposed Electric Vehicle-Grid Integration Framework

• Grid constraints
• Electricity price
• Additional load data

• Optimized charge schedule
• Optimized charging cost
• Cost incentive for wait times

• Generation
• Storage 

values

• Optimized charge schedule for 
• Demand charge mitigation
• Operating cost reduction
• Charging stations integrated with building & 

renewables
• Quantify communication requirements
• Enable peer-to-peer transactions for price negotiation

HIVE Electric Vehicle-Grid Integration
Using Distributed Control

AES Simulation 
Framework

(Distribution Grid)
• Arrival and departure time
• Start and end SOC
• Energy requirement
• Vehicle parameters
• Connected charger details
• Desired charging cost
• Maximum allowable charging 

delay

Buildings
Renewables & 

Storage

• Controllable loads
• Uncontrollable loads • Optimized 

load profile

Electric Vehicles Loads DER Grid
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Consensus Control: Performance Evaluation
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