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Presentation Overview

* Overview of two research areas related to transportation and grid impacts
— Learned ride-hailing fleet control, load management
— Consensus charging overview
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Presentation Overview

* Overview of two research areas related to transportation and grid impacts
— Learned ride-hailing fleet control, load management
— Consensus charging overview

* Integration into broader AES simulation framework
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Ride Hailing Modeling, Managed Loads




Model Overview, Inputs and Outputs
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Fleet size J
Occupancy, etc.

O-D locations
Pickup times

* S/kWh by TOD (;%;
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9g pooling

willingness

e Station power levels
*  Locations, plugs, etc.
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Model Overview, Inputs and Outputs
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Broad Outputs:

Vehicle utilization

Fleet performance
Station economics
... and many more!
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Fleet Visualization (Austin, TX)

Trip Demand:
Ride Austin TNC Data
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https://i.imgur.com/4UpXQjH.gifv




HIVE 0.4.0+ Model Structure




Data-Driven Fleet Control

e \Version: 0.1.0, heuristic based decision making
e Version: 0.4.0: Refactored HIVE in an “RL gym” to enable model training
e Exploring opportunities for improved performance beyond heuristics
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Data-Driven Fleet Control

e \Version: 0.1.0, heuristic based decision making
e Version: 0.4.0: Refactored HIVE in an “RL gym” to enable model training
e Exploring opportunities for improved performance beyond heuristics

State
* Current & upcoming
requests

*  Current & upcoming
prices to charge
* Fleet average SOC

* Fleet composition by state
| Agent
Environment “Fleet Manager”
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Data-Driven Fleet Control

e \Version: 0.1.0, heuristic based decision making
e Version: 0.4.0: Refactored HIVE in an “RL gym” to enable model training
e Exploring opportunities for improved performance beyond heuristics
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* Fleet composition by state
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Data-Driven Fleet Control

e \Version: 0.1.0, heuristic based decision making
* \Version: 0.4.0: Refactored HIVE in an “RL gym” to enable model training

e Exploring opportunities for improved performance beyond heuristics

State
Reward * Current & upcoming
‘ * Marginal Income l requests
7 * Request revenue — charging costs * Current & upcoming

prices to charge
* Fleet average SOC
* Fleet composition by state

Agent

Action

Environment

L

% Fleet Charging
% L2 vs DCFC

“Fleet Manager”
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Data-Driven Fleet Control
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Sample Scenario, Downtown Chicago

« Requests: Two days of request data - one for training, one for test
* Fleet: 350 fleet vehicles with 50 kwh battery

« Infrastructure 4 fast charging stations, 1 base with slow charging

« Charging Costs: variable by time of day, based on data from ComEd
« Forecasting: perfect for upcoming prices and requests

Charging Price/kwh by Hour of Day
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Results, RL-Trained Fleet Manager

tune/episode_reward_mean
tag: ray/tune/episode_reward_mean
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Results, RL-Trained Fleet Manager, cont.
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Future Work, HIVE

e Extended study over 10+ days of request data

* Expose fleet manager to more complicated rate structures
(demand charges)

* Simulate more constrained scenarios — limited infrastructure,
larger geographic area

* Expand scope of state/action space to include control of more
than just charging

— Fleet rebalancing
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Consensus Charge Control




Background — Typical Control Hierarchies

A) No Control

AES Simulation Framework
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Proposed: Consensus-Based Control

C) Consensus-based Distributed Control
Rather than communicating with a centralized node, vehicles communicate amongst
each other to develop a charging profile through consensus Power link

Communication link

Step 2: Aggregate optimized charge
profiles from individual EVs

Step 1: Communication among EVs

P
ﬂ:‘,:.ﬁ EVSE
EV e, o BV
Povi "Ao gmiyok” Pey Pevi ‘w‘ ™,
EV 2
& Pe
. . . . . ﬁ“llllIll-:ll-.llllI
Node objective minimize » fi(z;) eV O, H R
1€V 0‘. i .“

Where,f»ﬁ(ﬂ?ﬁ) =min. P,
P..,; - Charging profile for each EV

EV
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Consensus Control — Deeper Dive

C) Consensus-based Distributed Control
In addition to vehicles communicating amongst each other to optimize profiles at the station-level,
additional communication amongst stations to consider grid supply / capacity

Step 4: Aggregate optimized load profile
from individual charging stations

Step 3: Communication among
Charging Stations

AES Simulation Framework

. Pcs,i
=T EEEEEEEEEEEEEEEEEEEEEEEEEENEEEN
EVSE ... ““ EVSE

Pcsi. Yo, ““‘ IDcsi
" '
EVSE

Node objective minimize >  fi(x;)
i€V

Where, fi (i) = min. P

Step 5: If Pagg<= Plim, Stop. Else, repeat.

cs,i

P.i— Aggregated load profile at charging station P,.. = Grid supply/capacity constraint
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Consensus Control: Parameters Assumed

Focus: Demand charge mitigation, by flattening the charging profile

Parameters:
— EV,is the vector specified by (a;, d;, &, P,

— a,is the arrival time of EV..

— d. is the departure time of EVi.

— e, is the charging energy demand of EV.. e, (t)=0 if t < a,or t=d.

—_ Pmax,i

— ry(t)is the instantaneous charging rate of EV.. r, (t) =0 if t<a, or t=d.

is the peak charging rate of EV..

— P, (t)is the instantaneous aggregated power at charging station

Approach: ADMM based distributed control
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Consensus Control: Performance Evaluation, cont.

Peak Power vs. No. of Vehicles Peak Power vs. No. of Vehicles
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Consensus Control: Performance Evaluation, cont.

% Peak Reduction
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Consensus Control: Performance Evaluation, cont.
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Transportation Topics, AES Simulation Framework




Load Shifting Strategy, Comparison

HIVE: “Plug” control
HIVE has no formal charge control, but can load
shift by controlling when vehicles are sent to charge
Fleetwide charging peaks are controlled through
strategic dispatch & charge instructions
Main incentive is to recharge vehicles quickly so
additional passengers may be served

a

Charge Load

Time of Day

No grid feedback, static decision-making
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Load Shifting Strategy, Comparison

HIVE: “Plug” control

HIVE has no formal charge control, but can load
shift by controlling when vehicles are sent to charge
Fleetwide charging peaks are controlled through
strategic dispatch & charge instructions

Main incentive is to recharge vehicles quickly so
additional passengers may be served

a

Charge Load

Time of Day

No grid feedback, static decision-making

Consensus: “Charge” control
Consensus control can affect the charging rate during an
event, but has no control over plug-in / plug-out times
Charging peaks are controlled within the confines of a
dwell. Greater dwell time correlated with greater flexibility
Likely to be best integrated at fleet depots where vehicles
have long overnight stays

S

Charge Load

v

Time of Day

Direct integration with AES framework
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Proposed Electric Vehicle-Grid Integration Framework

Electric Vehicles Loads DER Grid

Renewables &
Storage

* Generation
* Storage
values

Electric Vehicle-Grid Integration
Using Distributed Control

[ Buildings ]

* Controllable loads
* Uncontrollable loads

*  Optimized charge schedule
*  Optimized charging cost
e Cost incentive for wait times

R —

* Arrival and departure time

e Startand end SOC

* Energy requirement

* Vehicle parameters

e Connected charger details

* Desired charging cost

*  Maximum allowable charging
delay

* Optimized
load profile

AES Simulation
ﬁ Framework
h (Distribution Grid)

* Grid constraints
* Electricity price
* Additional load data

*  Optimized charge schedule for
*  Demand charge mitigation
e Operating cost reduction
* Charging stations integrated with building &
renewables
e Quantify communication requirements
* Enable peer-to-peer transactions for price negotiation
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Consensus Control: Performance Evaluation

24h Horizon Real-time
No. of No Hierarchical No Hierarchical w
Evs Central Central
Control W consensus Control consensus

100 343.20 331.0¢ 185.62 343.20 208.¢60 209.08
110 442,20 398.55 217.31 442,20 238.80 243.35
120 448.80 241.78 224,23 443,80 234.62 235.71
130 455.40 320.99 255.11 455,40 277.45 275.70
140 521.40 394,34 275.94 521.40 294,59 303.52
150 561.00 384.12 294 .62 561.00 319.98 332.87
1€0 692.99 37¢€.78 328.82 £€92.99 352.09 367.62
170 600.60 584.93 311.22 600.60 339.24 363.19
180 607.20 591.54 3e7.80 e07.20 411.00 443.04
190 752.40 6l6.23 387.94 752.40 411.69 417.10
200 679.80 430.04 36l.56 £79.80 402.70 423.77
210 699.60 591.25 383.65 £99.60 425,21 464 .45
220 759.00 678.15 363.33 7559.00 410.95 449 .66
230 838.20 T772.26 432.38 838.20 445,34 492.35
240 825.00 493.36 433.41 825.00 431.70 538.06
250 930.60 512.44 470.79 930.60 515.44 571.15
260 983.40 673.42 491.98 983.40 513.60 554.92
270 957.00 626.71 549.64 957.00 603.40 669.20
280 1069.20 1028.20 506.77 1069.20 548.33 636.35
290 1056.00 615.27 601.80 1056.00 644,58 724.34
300 1082.4 939.98 609.24 1082.4 668.66 T743.17 NREL | 31
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