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Background & Motivation
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• Fast and optimal distribution systems voltage regulation
• Larger Systems: Increasing computational complexity

– Distributed and parallel computation
– Autonomous grid structure

• No performance loss
• Regional control and computation
• Collaborating while preserving detailed information

Background & Motivation
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Overall Goals

• Large distribution systems with deep renewable energy 
penetration

• Fast OPF solving
• Optimal solution without compromising performance

(compared with centralized algorithms)



System Model & Design Intuition
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Distribution System Modeling

• Radial Distribution Network
• Dist-Flow Model [Baran 1989]

• Lin-Dist-Flow Model [Baran 1989, Farivar 2013]

~1% erros

Substation

Resistance/Reactance
of common path
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Design Intuition

• General distribution network and sensitivity matrix
• Properties behind subtree-based network structure
• Go deeper
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Example

• IEEE 37-Node Test Feeder

Example: Any node i in subtree Area 2 and any node j in subtree Area 3 share the identical 
common path leading back to the substation, i.e., lines 1-2-4. Therefore, 
𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑅𝑅6,21 = 𝑟𝑟12 + 𝑟𝑟24, 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥12 + 𝑥𝑥24 for any i within Area 2 and any j within Area 3

6,………...,15,21…………34

6,…
…

..,15,21…
…

.34

Area 2

Area 3

𝑹𝑹𝟔𝟔,𝟐𝟐𝟐𝟐

𝑹𝑹𝟐𝟐𝟐𝟐,𝟔𝟔



Solving Large OPF
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• OPF Problem

• (Regularized) Lagrangian

Problem Formulation
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• Primal-Dual Gradient Algorithm

• Design Motivation
– Centrally coordinated algorithm: increasing computation in 

the coupling term (𝑂𝑂 𝑁𝑁2 )
– Hierarchical structure

Gradient Algorithm
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Hierarchical Implementation

• Subtrees & useful properties
• Individual node update
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Hierarchical Implementation

• Subtrees & useful properties
• Individual node update

For clustered node

within other areas

within area k unclustered
nodes

Reduce/Recycle 
computation!
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Hierarchical Implementation

• Subtrees & useful properties
• Individual node update

For unclustered node

within all areas unclustered
nodes
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Hierarchical Implementation

CC

Classic centrally coordinated
distributed implementation

• Mathematically equivalent to 
the classic (distributed) 
gradient algorithm

• New implementation adapted 
for networked AGs structure 
− Design by exploring network 

and linearization structure
− Parallel computation of 

coupling terms (computation 
bottleneck!)
− Reducing and recycling 

computational load
− Node-wise information 

preserved within AGs
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Hierarchical Implementation
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• New implementation adapted 
for networked AGs structure 
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and linearization structure
− Parallel computation of 

coupling terms (computation 
bottleneck!)
− Reducing and recycling 

computational load
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preserved within AGs
AG-based hierarchical

distributed implementation
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Hierarchical Implementation

• Equivalent to centrally coordinated implementation
• Computational complexity reduction

– Ideal (probably unrealistic) situation: 𝑂𝑂 𝑁𝑁2 → 𝑂𝑂 𝑁𝑁 ⁄4 3

– Optimal/More clustering?
• Privacy preservation 

– Node-wise information preserved
– Topology information within areas preserved
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• Linearized multi-phase dist-flow [Gan 2016]

• Multi-Phase OPF Problem

Multi-Phase System Extension

: impedance of common path!
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Multi-Phase System Extension

• (Regularized) Lagrangian

• Primal-dual gradient algorithm
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Multi-Phase System Extension

• Decompose of the coupling terms
For clustered node

within other areas 

within area k

unclustered nodes
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Multi-Phase System Extension

• Decompose of the coupling terms
For unclustered node

within all areas 

unclustered nodes
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Numerical Setup

• Synthetic 11,000-node test feeder
– IEEE 8,500
– EPRI CKT7

• Primary side voltage control
– 4,521-node network
– 1,043 controllable loads

• Clustered into 4 areas consisting of
154—357 controllable loads

• Three-phase hierarchical distributed algorithm
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OPF Numerical Results

• 2-level: 4-fold speed improvement

– “Free” speed improvement 
– Parallel implementation: 2.5 times more

• 3-level: 31.3% further improvement
31.3% speed improvement

Cost=18022 Cost=18022
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OPF Numerical Results

• Voltage regulation



Distributed Version of the Algorithm
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Objective

 AES cellular control structure
 Multi-layer hierarchy
 Distributed coordination between 

cells in the same layer
 Reduced reliance on central 

controller (flexibility, 
robustness, privacy)

 By merging
 Complexity reduction method
 Distributed feedback-based 

algorithm (review later)

Low complexity feedback-based algorithm that is flexible to 
various communication scenarios
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Review of Distributed Feedback-Based Algorithm

• Recall the OPF Problem that we attempt to solve

• Primal-dual method 𝑥𝑥𝑖𝑖 = [𝑝𝑝𝑖𝑖 ,𝑞𝑞𝑖𝑖]𝑇𝑇

A distributed algorithmic framework applicable to systems with underlying 
non-sparse network graph

Need all-to-all communication 
because 𝑅𝑅 and 𝑋𝑋 are non-sparse
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Abstraction of Power Networks

Interconnected system network

:sensor

:actuator

:node with both actuator and sensor

:passive node

Cyber layer network

• For online OPF
– Sensor: voltage magnitude
– Actuator: active/reactive power

• Each sensor communicates 
with at least one actuator 

• Actuators’ network is 
connected (no need to match 
physical network)
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Review of Distributed Feedback-Based Algorithm

• Main idea
 Each actuator has an estimate of all the dual variables (     and     )

 Focus on      as similar logics apply to 

 The nodes use distributed communication reaches consensus for 𝜆̅𝜆𝑖𝑖 for
all 𝑖𝑖 (at an optimum of 𝜇̅𝜇𝑖𝑖, 𝕝𝕝𝜇̅𝜇𝑖𝑖∗)

Copy of 𝜇̅𝜇 at node 1 (or  𝜆̅𝜆(1))

All the copies of 𝜇̅𝜇2 (or 𝜆̅𝜆2)
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Review of Distributed Feedback-Based Algorithm

• Proposed updating rule:

• Distributed communication is only used for the consensus
• Provably convergence
• Event-triggered version available
• Plug-and-play capability
• Drawback: requires 𝑁𝑁𝑀𝑀 number of variables (originally 𝑀𝑀)
• Recall the complexity reduction trick

Primal update only needs local variables

Using voltage measurement to find a dual optimum 𝜇̅𝜇𝑖𝑖∗
Distributed communication for consensus
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Complexity Reduction on the Distributed Algorithm

• All the actuators in each area 
reach consensus of
– Dual variables in the same area
– Sum of the dual variables in each 

of other areas

• New partition of 𝜇̅𝜇: 

Area 1 Area 2 Area 𝐾𝐾……

Each of them surrogates the sum of the dual variables in another area

Area 2 Area 𝐾𝐾……



NREL    |    36

Complexity Reduction on the Distributed Algorithm

• Similar updating rule:

• Soft constraints on the distributed communication
– Each sensor communicates with at least one actuator in every other area
– Every row (and column) of the off-diagonal block 𝐿𝐿𝑖𝑖𝑖𝑖 has at least one 

non-zero entry
– Off-diagonal blocks 𝐿𝐿𝑖𝑖𝑖𝑖 defines 

Consensus of the sum of the dual variables in each of other areas 

Consensus of the dual variables for 
every other node in the same area
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Complexity Reduction on the Distributed Algorithm

• Equivalent to the original algorithm
• Number of copies is greatly reduced:

– From 𝑁𝑁M to ∑𝑎𝑎∈𝒦𝒦𝑁𝑁𝑎𝑎(𝑀𝑀𝑎𝑎 + 𝐾𝐾 − 1)

• The reduced amount of the multiplications are translated to 
less amount of variables in the distributed approach

• Proof of convergence 
– Mild assumptions

• The objective function is continuously differentiable and strongly convex
• The constraint set is nonempty, compact, and convex
• The problem is feasible and the Slater condition is satisfied

– LaSalle’s invariance principle to show convergence to invariant set 
where the copies of the dual variables are at the optimal point
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Hierarchical Distributed Control Algorithm

• Assume each area has a regional coordinator (RC)
– Distributed communication between RC
– Number of variables further reduced

from ∑𝑎𝑎∈𝒦𝒦 𝑁𝑁𝑎𝑎(𝑀𝑀𝑎𝑎 + 𝐾𝐾 − 1) to 𝐾𝐾2 + 𝑀𝑀
– Similar proof of convergence 

Distributed 
communication • Flexibility to adjust the algorithm 

to various operation scenarios

• Future works:
– Check how the feedback-based 

algorithm complement with other 
controls (e.g. black start, LTC)



Q&A
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