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Due	to	the	potential	for	cascading	failures	
a	clever	cyber-attack	can	be	amplified	by	the	grid	operators



San	Diego	Blackout,	Sept.	2011	– Human	Error

“Ideally”	a	cyber	attack	would	cause	the	operators	to	make	a	human	error
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Simplistic	view of	a	Power	Grids
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Physical	Attack	in	San	Jose	(Apr.	2014)
“A	sniper	attack	in	April	2014	that	knocked	out	an	electrical	substation	near	San	Jose,	Calif.,	has	
raised	fears	that	the	country's	power	grid	is	vulnerable	to	terrorism. ”	–The	Wall	Street	Journal



Cyber	Attack	in	Ukraine	(Dec.	2015)

Unplugged	225,000	people	from	the	Ukrainian	electricity	grid



Cyber	Attack	in	Ukraine	(Dec.	2015)

Unplugged	225,000	people	from	the	Ukrainian	electricity	grid



Transmission	Grid	- State	Recovery	after	a	Cyber-Physical	Attack
§ State	recovery	under	the	DC	model

§ State	recovery	in	the	presence	of	measurement	noise	and	uncertainty

§ State	recovery	under	the	AC	model

§ Attack	identification	when	the	affected	area	is	unknown

[1] Saleh Soltan, Mihalis Yannakakis, Gil Zussman, “REACT to Cyber Attacks on Power Grids,” IEEE Transactions on Network Science and 
Engineering, vol. 6, no. 3, pp. 459–473, Sept. 2019. 

[2] Saleh Soltan, Mihalis Yannakakis, Gil Zussman,  “EXPOSE the Line Failures following a Cyber-Physical Attack on the Power Grid ,” IEEE 
Transactions on Control of Network Systems, vol. 6, no. 1, pp. 451–461, Mar. 2019. 

[3] Saleh Soltan and Gil Zussman, “Power Grid State Estimation after a Cyber-Physical Attack under the AC Power Flow Model,” Proc. IEEE PES-
GM’17, 2017.

[4] Saleh Soltan, Mihalis Yannakakis, Gil Zussman, “Power grid state estimation following a joint cyber and physical attack,” IEEE Transactions on 
Control of Network Systems, vol. 5, no. 1, pp. 499–512, Mar. 2018.



Detect	the	line	failures	as	well	as	the	attacked	area	𝐻 after	a	cyber-physical	attack

Attack	Identification	when	the	Affected	Area	is	Unknown

[1] S. Soltan, M. Yannakakis, and G. Zussman, “REACT to cyber attacks on power grids,” IEEE Transactions on Network Science and Engineering, 
vol. 6, no. 3, pp. 459–473, Sept. 2019. 



Physical	attack	- some	lines	in	the	area	fail

Cyber	attack:
◦ Data	distortion
◦ Data	Replay

𝜃⃗⋆ is	the	observed	phase	angles	vector	after	the	attack	which	is	different	from	the	actual	𝜃⃗′

NP-Hard	to	detect	the	set	of	line	failures	(even	if	the	attack	area	is	known	and	even	under	the	DC	
approximation)

Approximate	solutions

Location	Unknown	- Cyber	Attacks



Approximately	detect	the	attacked	area	in	3	steps

Identify	line	failures	with	some	confidence	

Example



Performance	- Small	Area	(15	nodes)

100	1,2,3-line	failure	samples



Data	Distortion	vs.	Data	Replay
Difficulty	in	detecting	the	attacked	area	after	a	data	replay	attack



Performance	- Large	Area	(31	nodes)

100	1,2,3-line	failure	samples



From	Transmission	to	Distribution

Most	of	the	research	in	this	field	has	focused	on	the	Transmission	grid

The	Distribution	grid,	on	the	other	hand,	suffers	from	under-observability even	when	not	attacked
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External	data,	
e.g.	weather	data

Sky	imager

Layer	3:	Autonomous	Microgrid	Restoration

Layer	1:	Security	Situational	Awareness

Cyber
threat
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Layer	2:	Distributed	Microgrid	Coordination

Physical
threat
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Project	objectives

Layer	1:	Security	Situational	Awareness

1. Assess	and	optimize	resiliency	against	physical	threats

2. Detect	and	localize	cyber	attacks

Layer	2:	Distributed	Microgrid	Coordination

3. Continuity	of	service	after	attack	on	control	center	or	
communication	system

Layer	3:	Autonomous	Microgrid	Restoration

4. Fast	restoration	after	blackouts

5. Robust	parallel	grid-forming	inverters

MGMS:	Microgrid	Management	System;	MGC:	Microgrid	Controller;	RIAPS:	Resilient	Information	Architecture	Platform	for	the	Smart	Grid

Loss	of	MGMS
Loss	of	communication

Blackout

Global	restoration

Local	restoration

Communication	line Power	line

AURORA (AUtonomous and	Resilient	Operation	of	energy	systems	with	RenewaAbles),	PI:	Ulrich	Muenz
Develop	and	demonstrate	a	3-layer	protection	scheme	against	cyber	and	physical	threats



§ Distribution	grid
§ Natural	fluctuations
§ Limited	observability
§ Sensors	are	becoming	more	pervasive	but	still	“fragile”
§ DC	approximation	does	not	hold

§ Given:
§ Historical	data	on	voltage	and	power
§ Partial	real-time	power	measurements	(e.g.,	due	to	cyber	attacks)

§ Power-flow	equations	may	be	under-determined	
§ Model-driven approach	may	fail

§ Objective:	prediction	of	voltages

§ Method:	Incorporate	the	physical	model	of	the	power-flow	
equations	into	the	Deep	Learning	training
§ Hybrid	model	and	data	driven	approach

Distribution	Grid	– Partial	Observability

[1] Jonathan Ostrometzky, Konstantin Berestizshevsky, Andrey Bernstein, and Gil Zussman, “Physics-Informed Deep Neural Network Method for 
Limited Observability State Estimation”, arXiv:1910.06401v2 [eess.SY], Feb. 2020



Objective	and	Assumptions

Goal:
§ Accurate	estimation	of	the	distribution	grid	state

Assumptions:
§ The	distribution	grid	is	affected,	and	

becomes	under-observable
§ The	Power-Flow	Equations	cannot	be	solved

Method:

Evaluation:	numerical
18

Deep	Learning

Power-flow

Historical	data:
{𝑣( 𝜏 , 𝑠̂ 𝜏 }./01213./013

Real-time	measurements:
𝑠̂4 𝑡 for	some	j

Predict:
𝑣(6 𝑡 for	all i



Related	Work

◆ Distribution	system	state	estimation	[Chen	et	al.	2019],	[Primadianto and	Lu,	
2017]

◆ Matrix	completion	techniques	[Donti et	al.,	2018],	[Genes	et	al.,	2019],	
[Miao	et	al.,	2019]

◆ Machine	learning	tools	for	distribution	system	state	estimation	[Bhela et	al.,	
2018],	[Jiang	and	Zhang,	2016]

◆ Physics-informed	deep	learning	methods	[Zamzam and	Sidiropoulos,	2019],	
[Hu	et	al.,	2020],	[Singh	et	al.,	2020],	[Zhang	et	al.,	2019]

◆ Hybrid	machine	learning	models	in	other	domains	[Zhu	et	al.,	2020]



Sudden	Failure	State	Estimation	(SFSE)

Problem	formulation

t-T-1,  … t-1,    t

Fully	Observable:
2Nmeasurements/time	step

?

time

<N
Meas

#	measurements

𝒪 𝑁9 𝑡 , 𝑁: 𝑡 < 50%

For	different	levels	of	Observability	at	time	(t),	defined	as																					 for	a	distribution	network	of	N nodes:

The	Power-Flow	Eqautions	cannot	be	directly	solved	if	the	observability	level	drops	below	50%

à defines	a	low-observable,	under-determined	scenario
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Power	Flow-informed	Deep	Neural	Network	(DNN)

22
Ostrometzky,	Jonatan,	Konstantin	Berestizshevsky,	Andrey	Bernstein,	and	Gil	Zussman.	"Physics-Informed	Deep	Neural	Network	Method	for	Limited	
Observability	State	Estimation." arXiv preprint	arXiv:1910.06401 (2019).
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Power	Flow-informed	Deep	Neural	Network	(DNN)
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N – The	number	of	nodes
Ns – The	number	of	nodes	that	report	the	complex	
power	values
Nv – The	number	of	nodes	that	report	the	complex	
voltage	values
Inputs:	
N time-series	[t-T,…t-1]	of	the	complex	voltage	values	
N time-series	[t-T,…t-1]	of	the	complex	power	values
Ns <	N complex	power	values	(for	time	index	t)
Nv <	N complex	power	values	(for	time	index	t)

Power	Flow-informed	Deep	Neural	Network	(DNN)



25

The	Loss	function	acts	as	a	regularizer	for	the	DNN,	
incorporating	the	AC	Power-Flow	Equations

25

Power	Flow-informed	Deep	Neural	Network	(DNN)

N – The	number	of	nodes
Ns – The	number	of	nodes	that	report	the	complex	
power	values
Nv – The	number	of	nodes	that	report	the	complex	
voltage	values
Inputs:	
N time-series	[t-T,…t-1]	of	the	complex	voltage	values	
N time-series	[t-T,…t-1]	of	the	complex	power	values
Ns <	N complex	power	values	(for	time	index	t)
Nv <	N complex	power	values	(for	time	index	t)
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Our	Loss	function	acts	as	a	regularizer	for	the	DNN,	
incorporating	the	AC	Power-Flow	Equations

MSE	Term
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Power	Flow-informed	Deep	Neural	Network	(DNN)



27

Our	Loss	function	acts	as	a	regularizer	for	the	DNN,	
incorporating	the	AC	Power-Flow	Equations

0

+	Penalize	infeasible	power	flow

27

MSE	Term

Power	Flow-informed	Deep	Neural	Network	(DNN)



Evaluation
Based	on	the	IEEE-
37	bus	feeder

~50%	of	the	buses	
inject	power



◆ NREL	Provided	us	with	real	distribution	grid	data:
• One	photovoltaic	panel	production	(active	power)	– sampling	rate	of	1	Hz
• Eight	real	usage	of	houses	(active	power)	– sampling	rate	of	1	Hz

◆ Processing
• Randomly	allocated	to	buses
• Generated	corresponding	reactive	power
• Smoothed	the	data,	using	a	moving-average	60-second	window,	and	down-sampled
• Used	MATPOWER	to	solve	the	Power	Flow	Equations (AC	model)	and	obtain	voltages

◆ Overall,	acquired	a	full	week	of	data	(~10,080	time-steps	per	time-series)
• 90%	of	the	T-long	sequences	used	for	training
• The	rest	used	for	validation

29

Available	Data



◆ Arbitrarily	assigned	different	nodes	
with	data	based	on	the	real-world	
measurements	provided	by	NREL 
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Available	Data	- Power

IEEE	37-node	test	feeder	distribution	grid
represents	a	generator-node
represents	a	load-node	



◆ Used	MATPOWER	to	calculate	the	time-series	of	the	complex	voltages,	which	satisfies	the	
Power-Flow	Equations,	to	complete	the	dataset	needed	for	training	and	validation 

33

Available	Data
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Training

• We	trained	the	setup	for	different	levels	of	observability:	49%,	39%,	25%,	17%,	and	8%

• This	mimics	actual	attacks/malfunctions

• 90%	used	for	training
• 10%	used	for	validation

Example	of	an	observability	value	of	39%:
• 0/36	voltages	are	known	at	time	(t),
• 28/36	power-values	are	known	at	time	(t).

𝒪 𝑁9 𝑡 , 𝑁: 𝑡 =
𝑁9 𝑡 + 𝑁: 𝑡

2𝑁 =
28 + 0
36 E 2 = 0.39

*	We	use	36	instead	of	37	nodes	since	one	of	the	nodes	is	a	behind	a	transformator.



36

Numerical	Results	– Comparison	with	WLS	and	Sensitivity	to	T

The	magnitude	and	the	angle	of	the	normalized	Mean-Square-Error	for	
the	complex	voltages	time-series,	

compared	with	the	Weighted	Least	Square	Estimation

Physics-Informed Deep Neural Network Method for Limited Observability State Estimation Performance 2020, November 2-6, 2020, Milan, Italy

(a) Magnitude{E (C )} (b) Angle{E (C )}

Figure 8: MSE for the IEEE-37 Node test feeder voltages
magnitude and angle estimation under partial observability.
This plot compares DNN models trained with di�erent de-
gree of PFE regularization.

(a) Magnitude{E (C )} (b) Angle{E (C )}

Figure 9: MSE for the IEEE-37 Node test feeder voltages mag-
nitude and angle estimation under partial observability -
WLS estimation and persistent guess. The DNN results (for
_ = 2) are plotted for comparison.

3.4.1 Impact of the selected value of _. A DNN trained with PFE
regularization (_ > 0) showed, in general, lower MSE when com-
pared with a non-regularized DNN (_ = 0). This phenomenon
is especially evident in the angle estimation (see Fig. 9). Indeed,
the improvement is less pronounced for the magnitude estimation.
However, this can be explained by the fact that the MSE achieved
by all DNN’s (including _ = 0) is extremely small, and thus, the
overall margin of improvement is narrower.

3.4.2 Influence of the size of ) . Fig. 10 presents a comparison
between ) = 5 and ) = 50 for selected permutations. As can be
seen, the di�erences are negligible. Thus, it can be concluded that
the amount of information from historic data (with respect to future
voltage-phasor estimation) is negligible beyond at least a 5-minute
window () = 5).

It is worth noting, however, that as the number of observable
buses increases, the overallMSE values also increase. This is counter-
intuitive, and indeed requires further study. We suspect that due to
the fact that we use real-world data, it might be that the time-series
obtained include noise from various sources, which can cause some
mis-modelling. Nonetheless, the DNNs with physics-informed reg-
ularization (_ > 0) present consistently higher estimation accuracy.

(a) Magnitude{E} (b) Angle{E}

Figure 10: Impact of ) . The Y axis shows the MSE for the
IEEE-37 Node test feeder voltages magnitude and angle es-
timation under partial observability. The plot compares the
estimation MSE of DNN to WLS and persistent estimators.
All the estimators were checked both with ) 2 {5, 50}.

4 CONCLUSION AND DISCUSSION
In this paper, we presented a new approach of state-estimation in
the distribution grids during sudden failures or attacks. The method
capitalizes on a physics-informed DNN training algorithm that is
able to take advantage of the grid physical information. We demon-
strated the performance of the proposed method using an experi-
mental setup which simulates a case of a sudden failure and loss of
observability. We showed that our DNN-based estimation achieves
a higher accuracy of the voltage-phasors estimation when com-
pared with the widely used WLS-based estimation. Furthermore,
the main contribution of incorporating the PFE regularization into
the DNN model was shown to be in the voltage-angles estimation.
The latter is typically overlooked in standard DSSE algorithms, but
will become an important factor in modern and future low-inertia
distribution grids.

Some ideas for further research follow: 1) Although our PFE-
induced training of a DNN showed higher state estimation accura-
cies, we did not perform a full analysis study regarding the optimal
value of _ parameter for a given observability value (OC ). The next
step of our work is to establish a set of optimal _ values. 2) Further-
more, in this paper we compared our physics-informed DNN output
estimation accuracy to the standard WLS methodology which uses
historic data in order to establish the di�erent weighting of the
missing samples. However, new approaches for the missing PMU
data recovery [19] may be used in order to enhance both the WLS
and our proposed DNN, which could improve the overall estima-
tion accuracy, and should be investigated in future work. 3) In
this research, we used the DNN model with real numbers. As the
complex-number capable DNNs are currently being studied [31], it
is worth investigating the DSSE problem based on a DNN over the
C �eld. 4) Lastly, it is important to develop a uni�ed DNN model
that will be capable of dealing with multiple levels of observability
without requiring dedicated training sessions.

REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
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Numerical	Results	– Sensitivity	to	l

MSE	
term

Power-flow	
Equations	

regularizer	term The	magnitude	and	the	angle	of	the	normalized	
Mean-Square-Error	for	the	complex	voltages	time-series	



Quick	Detour	– COSMOS	– Potential	Testbed	for	Studying	Interdependencies

38

§ NSF	Platforms	for	Advanced	Wireless	Research	(PAWR)	- City	Scale	Wireless	Testbed	

§ COSMOS	(Rutgers,	Columbia,	NYU,	NYC)	- A	community	infrastructure	in	Upper	Manhattan	

§ Potential	testbed	for	power/communication	interdependencies



Latency and	compute	power	are	two	important	
dimensions
Edge	computing	is	an	enabler	for	real-time	
applications	(autonomous	vehicle,	etc.)
Objective: Real-world	investigation	of	urban	
environments	with	
◦ Ultra-high	bandwidth	(~Gb/s)
◦ Low	latency	(<5	ms)
Enablers:
◦ Antennas	on	lightpoles
◦ 10s	of	64	element	mmWave arrays
◦ 10s	of	miles	of	Manhattan	dark	fiber
◦ B5G	edge	cloud	base	stations
◦ Programmable	

Project	Vision

• Ultra-high bandwidth, low latency, and powerful edge computing will enable new classes of real time 
applications

• NSF supplements to run experiments in the testbed (DCL-20-046) + EC NGIAtlantic grants



Columbia	Electrical	Engineering	– Postdoc	Positions

Power	grid	resilience	(with	Prof.	James	Anderson)

Beyond	5G	wireless	– design	and	evaluation	in	the	
NSF	PAWR	COSMOS	city-scale	testbed

gil.zussman@columbia.edu wimnet.ee.columbia.edu



Summary	and	Ongoing	Work
§ Expanded	previous	work	on	transmission	systems	and	static	model	to	distribution	system	with	
streaming	data

§ Developed	a	hybrid	model	and	data	driven	approach	to	recover	
missing	data	in	distribution	grid	

§ Has	a	“black	box”	nature	but	takes	the	
power	flow	equations	and	system	parameters	
into	account

§ Showed	that	it	works	well	with	real-world	data	
§ Future/ongoing	work:

§ Improve	the	DNN	to	accommodate	a	general	training	
set,	rather	than	a	training	set	per	scenario

§ Evaluate	the	method	with	the	Holly	Cross	Energy	
distribution	grid	as	part	of	the	AURORA	project

§ Extend	to	false	data	injection

41
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