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Big, deep, intelligent and so on

¢ unprecedented availability of
computation, storage, and data

¢ theoretical advances in optimization,
statistics, and machine learning

e ...and big-data frenzy

— increasing importance of data-centric
methods in all of science/engineering

Make up your own opinion, but machine
learning works too well to be ignored.
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Feedback — our central paradigm

. hysical .
actuation P
world sensing
“making a “making
difference sense of
to the world” the world”
automation information inference and

data science

and control technology
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Control in a data-rich world

¢ ever-growing trend in CS and robotics:
data-driven control by-passing models

e canonical problem: black/gray-box
system control based on I/O samples

Q: Why give up physical modeling and
reliable model-based algorithms ?

Data-driven control is viable alternative when

® models are too complex to be useful
(e.g., fluid dynamics & building automation)

e first-principle models are not conceivable
(e.g., human-in-the-loop & perception)

® modeling & system ID is too cumbersome
(e.g., robotics & power applications)

Central promise: It
is often easier to learn
control policies directly
from data, rather than
learning a model.

Example: PID
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Snippets from the literature

unknown system

1. reinforcement learning / or
stochastic adaptive control / or
approximate dynamic programming %

with key mathematical challenges )
. 1]
® (approximate/neuro) DP to learn approx. § : . 3
. . . S reinforcement learning control 5
value/Q-function or optimal policy © =
=}
¢ (stochastic) function approximation O@
e exploration-exploitation trade-offs eStimate N
} ) w & -
and practical limitations reward
¢ inefficiency: computation & samples
e complex and fragile algorithms
. . A Tour of Reinforcement Learning
¢ safe real-time exploration The View from Continuous Control
@ suitable for physical control systems
Wlth real_tlme & Safety Constralnts ’) University of California, Berkeley
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Snippets from the literature cont'd

2. gray-box safe learning & control
® robust — conservative & complex control

® adaptive — hard & asymptotic performance

e contemporary learning algorithms
(e.g., MPC + Gaussian processes / RL)
— non-conservative, optimal, & safe
@ limited applicability: need a-priori safety

3. Sequential system ID + control

¢ |D with uncertainty quantification
followed by robust control design

— recent finite-sample & end-to-end ID
+ control pipelines out-performing RL

@ 1D seeks best but not most useful model
@ “easier to learn policies than models” -



Key take-aways

¢ claim: easier to learn controllers from data rather than models

¢ data-driven approach is no silver bullet (see previous 9)

¢ predictive models are preferable over data (even approximate)
— models are tidied-up, compressed, & de-noised representations
— model-based methods vastly out-perform model-agnostic ones

o deadlock ?

¢ a useful ML insight: non-parametric methods are often
preferable over parametric ones (e.g., basis functions vs. kernels)

— build a predictive & non-parametric model directly from raw data?
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Colorful idea

UQZU3:"':O

If you had the impulse response of a LTI system, then ...

¢ can build state-space system identification (Kalman-Ho realization)

e .. .but can also build predictive model directly from raw data :

Ufuture(t>
Ufuture(t - 1)
Yruture (t) = [ Y1 Y2 Ys o I ugre (F — 2)

* model predictive control from data: dynamic matrix control (DMC)

e foday: can we do so with arbitrary, finite, and corrupted 1/0O samples ?
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Preview

complex 2-area power
system: large (n~102),
nonlinear, noisy, stiff, &
with input constraints

VSC-HVDC
Station

control objective:
damping of inter-area
oscillations via HVYDC

but | without model
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seek method that works
reliably, can be efficiently
implemented, & certifiable

— automating ourselves
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Behavioral view on LTI systems

Definition: A discrete-time dynamical
system is a 3-tuple (Z>(, W, #) where

(i) Z>o is the discrete-time axis,
(i) W is a signal space, and

(iiiy 2 C W#>0 is the behavior.

Definition: The dynamical system (Z>(, W, #) is
(i) linearif W is a vector space & 4 is a subspace of W#=o,

(it) time-invariant if # C 0%, where ow; = w41, and

(iiiy complete if £ is closed < W is finite dimensional.

In the remainder we focus on discrete-time LTI systems.
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Behavioral view cont’d

% = set of trajectories in W220 & Pr is restriction to t € [0, T]

TN

A system (Z>o, W, &) is controllable ,
if any two trajectories w!, w? € Zcan _— *\1”\
be patched with a trajectory w € %r. T w

| I I
0 0 T

— 1/0: B = B* x Y where $* = (R™)%?=0 and #Y C (RP)%=0 are
the spaces of input and output signals = w = col(u,y) € #

— different parametric representations: state space, kernel, image, ...

— kernel representation (ARMA) : % = col(u,y) € (R™TP)%20 s t.
bou + biou+ -+ +bpo"u + agy+aroy+...a,0"y = 0
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LTI systems and matrix time series

foundation of state-space subspace system ID & signal recovery algorithms

u(t)

Uy —_—
Uy uz Uy
RN
\\‘, “5.\./ t
Us Ug

(u(t),y(t)) satisfy recursive

difference equation
bous+brugs1+. . . Hbpuppn+

apYit+ar1yiy1+- - +anyiin =0

(ARMA /kernel representation)

=

under assumptions

=

[bo ag bl al ...

bn an | SPans left nullspace
of Hankel matrix (collected from data)

() -

(1) (52) (3) -+
(v2) (i) (o) -+
(vs) () (2) -+

(

UT — L+1\]
Yr—L+1

(o7)
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The Fundamental Lemma

Definition: The signal u = col(uy,...,ur) € R™T is persistently
Ut UT—L41

exciting of order L if 51 (u) = [ ) o

uyr, v ur

] is of full row rank,
i.e., if the signal is sufficiently rich and long (T — L +1 > mL).

Fundamental lemma [Willems et al, '05]: Let T',t € Z~(, Consider

* a controllable LTI system (Z>¢,R™*?, ), and

e a T-sample long trajectory col(u®,y%) € %1, where

* u is persistently exciting of order ¢ + n (prediction span + # states).

Then |co|span (A (y)) =B | :
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Cartoon of Fundamental Lemma

Y2 ,17( t
persistently exciting controllable LTI sufficiently many samples
() () ()
2 3 4
Tht1 =Axy, + Buy, Y2 ( ys ) (yf; )
b —Co Dy, o> G GH G
parametric state-space model non-parametric model from raw data

all trajectories constructible from finitely many previous trajectories
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Data'd rlve n Sl m U |at|0 n [Markovsky & Rapisarda '08]

Problem : predict future output y € RPTiuwwe based on

e input signal u € R™ Tiuue
e past data col(u¢, y%) € %r,,,

— to predict forward

— to form Hankel matrix

Assume: 2 controllable & u¢ persistently exciting of order Tiyure + 7

Solution: given (uq, ..

- UTye) — COMpute g & (y1

..... YTiue ) from

uf

u

d =

Ur_N+1 uy
d d d
T}uture quuture Sl uT uTluture

d d d 9 =
Y1 Y Yr—_N+1 Y1
d d d ;
'nyuture nyuture +1 yT - L yTtuture e

Issue: predicted output is not unique — need to set initial conditions!
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Refined problem : predict future output iy € RP*Tuwe based on
* initial trajectory col(uini, yini) € R (m~+p) Tini — to estimate initial zin;
e input signal u € R T — to predict forward

e past data col(ud,y9) € %z, — to form Hankel matrix

Assume: 2 controllable & u9 persist. exciting of order Tii+ Tiure + 7

Solution: given (u1, ..., uz,,.) & COl(Uini, Yini) Up Uini
Y. -
— compute g & (y1, ..., yn,,.) from plg— [Yn
Ui U
= if Ty > lag of system, then v is unique Y (]
B d . d T B d L d T
U1 uT*TIuture*TTni+1 Yi yT*ﬂuture*ﬂnT+1
d ' d d
|:Upi| L Zﬂni ' Z‘T_Tfulure |:Yp:| L yTini gT_Tfulure
Uf uTini"’1 o uT_Tfuture“'l % yTihiJF1 o yT*Tfuture"’1
d d d d
LY Toni+ Thuture wr J L YT+ Thuure YT e |




Output Model Predictive Control

The canonical receding-horizon MPC optimization problem:

ﬂu‘ure_l ) .
inimi 3 gk = rerld + el quadratic cost with
ey k=0 e K R>0,Q=0&ref. r

subject to xp41 = Axy + Bug, Vk € {0,...,Ttuture — 1},  model for prediction
Yk = ka + D’Uk;, vk € {Oa o000 anuture - l}a over k € [0’ Tfuture N l]

Try1 = Azg + Bug, Vk € {=Thi—1,..., =1}, model for estimation
yr = Cxp, + Duy, Vk€ {—Tini -1,..., _1}, (many variations)
Uk Gu, Vke {Ow-wauture_l}y

hard operational or
yr €Y, Vke{0,..., Tiuyure — 1} safety constraints

For a deterministic LTI plant and an exact model of the plant,
MPC is the gold standard of control: safe, optimal, tracking, ...
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Data-Enabled Predictive Control

DeePC uses non-parametric and data-based Hankel matrix time series
as prediction/estimation model inside MPC optimization problem:

Tiuturefl .
. 2 2 quadratic cost with
mingze > Mok = rernllg + lluelle R 0.Q > 08ref. r
Up Uini non-parametric
subject to Yy g=|Y¥ni| model for prediction
Ut u and estimation
Y; (
up €U, Vk€{0,..., Tuure — 1}, hard operational or
yr €Y, Vke{0,..., Tuure — 1} safety constraints

® Hankel matrix with Tini + Tiyture rows from past data collected offline

U, d Y; d :
|:UI;:| = C%Tini“l’Tfuture (’LL ) and |:Y§:| = L%éjini“v’Tfuture (y ) (COUId be adapted Onlme)

® past Tini > lag samples (uini, yini) for zinj estimation  updated online
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Correctness for LTl Systems

Theorem: Consider a controllable LTI system and the DeePC &
MPC optimization problems with persistently exciting data of order
Tni+Tiuture +n. Then the feasible sets of DeePC & MPC coincide.

Corollary: If U/, Y are convex, then also the trajectories coincide.

Aerial robotics case study :

05




Thus, MPC carries over to DeePC
...at least in the nominal case.

Beyond LTI, what about measurement noise,
corrupted past data, and nonlinearities ?



Noisy real-time measurements

Tiyture—1 ) ) Solution: add slack
minimze > gk =l + luelz +Alloylli 1o ensure feasibility
s @y _
=0 with /;-penalty
U i ! for X, sufficient
. Yol |y o, = for \, sufficiently
subject to vl 9= || T o large o, # 0 only if
Y: y 0 constraint infeasible

up €U, Vk € {0,~-~7T%uture_1}7

c.f. sensitivity analysis
Y €Y, Vke {Oaanfuture - 1}

over randomized sims

average cost average constraint violations

10'°

o

=)

o

duration violations (s)

o

Ay A, 20/34



Hankel matrix corrupted by noise

Thuture—1 ) ) Solution: add a
mgi]n%?l%/ze > gk —rerlly + luell® +Agllgls  ¢,-penalty on g
b b

k=0
Uy Uini intuition: ¢, sparsely selects
. Y, Yini {Hankel matrix columns}
subject to |7y 1 9= 7| = {past trajectories}
Yi Y = {motion primitives}
up €U, Yk € {0, Thuwre — 1}, c.f. sensitivity analysis
yr €Y, Vke€{0,..., Tiyure — 1} over randomized sims
.10’ average cost average constraint violations
s 2
. L1
2 ‘é 5
©
1 J 5
0 © 0

0 200 400 600 800 200 400 600 800
Ag Xy 21/34
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Towards nonlinear systems ...

Idea: lift nonlinear system to large/oo-dimensional bi-/linear system
— Carleman, Volterra, Fliess, Koopman, Sturm-Liouville methods
— exploit size rather than nonlinearity and find features in data
— exploit size, collect more data, & build a larger Hankel matrix
— regularization singles out relevant features / basis functions

case study:
regularization
for g and o,
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recall the central promise:
it is easier to learn control
policies directly from data,

rather than learning a model



Comparison to system ID + MPC

Setup: nonlinear stochastic quadcopter model with full state info
DeePC + ¢;-regularization for g and o,
MPC : system ID via prediction error method + nominal MPC

MPC
single S
fig-8
run
random :

sims
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from heuristics &
numerical promises
to theorems



Robust problem formulation

1. the nominal problem (without g-regularization)

,Tfuture_l
minimize Z Y& —Tt+lc||2Q+ ||Uk||?%+)‘yH‘7y”1
guy =
Up Uini 0
o Yp _ @\nl Oy
subject to ﬁ\f 9=1" + K
Vi Y 0

up €U, Yk e{0,..., Ty — 1}

where = denotes measured & thus possibly corrupted data

2. an abstraction of this problem m;nieméze ! (Uf97 Yfg> + Ay Hng = Yini .

where G = {g: U;,g:uini & (/f;gelzl}
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3. a further abstraction minimize c (EA, g) = minimize Eg[c(¢,9)]
geqG g€ G

with G = {g: [/];g:uini & /U\fgeu} , measured £ = (ﬁ,ﬁ,ﬁ),

& P= og denotes the empirical distribution from which we obtained 3

4. the solution g* of the above problem gives poor oui-of-sample
performance for the problem we really want to solve: Ep [c (&, g*)]

where P is the unknown probability distribution of £

inf  sup Eglc(,9)]

5. distributionally robust formulation -
9€G QEB.(P)

where the ambiguity set B.(P) is an c-Wasserstein ball centered at P :

B.(P) = {P : irﬁf/ € =& |lwdll < e} where II has marginals P and P
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5. distributionally robust formulation 2~ sup_ Eq[c(&,9)]
9g€G QEB.(P)

where the ambiguity set Be(ﬁ) is an e-Wasserstein ball centered at P :

Bé(ﬁ) = {P : irﬁf/ € =& lwdll < e} where IT has marginals P and P

Theorem: Under minor technical conditions:
inf sup_ Eqle(t,9)] = min c(&g) + eXy lolliv
9€G QEB.(P) oSel
Cor: (,-robustness intrajectory space < ¢;-regularization of DeePC

x10°

cost

Proof uses methods by Kuhn & Esfahani: 2s

semi-infinite problem becomes finite after
marginalization & for discrete worst case

€

0—
10° 10* 10 102 107" 10026/34




Relation to system ID & MPC

1. regularized DeePC problem 2. standard model-based MPC

(ARMA parameterization)
minimize _ f(u,y) + Agllgll3

gGueUyey minimize  f(u,y)
U, Uini uel,yey
subject to % g = |Ymi : ini
Us u subject to  y = K | Yini
Y; Yy u
3. subspace ID | y=Y;g* 4. equivalent prediction errorID
where g* = g*(uini, Yini, u) solves ini i
e d_ 4
argmin gl minggize ) o5 = K |
g g i

Up Uini u _
subject to | Y, | g = | Yini ini
UI; o = y=K |yn| = Yrg"

u

27/34



subsequent ID & MPC

minimize  f(u,y)
uel,yey ’
Uini
subject to  y = K | yini
U
where K solves
2
Uini 5
arg min Z yj — K | Yinij
K p U
regularized DeePC
minimize fu,y) + X llgll3
 mimmize () + Al
Up Uini
subject to 513 g= y{:i
f
e Yy

minimize
ueld,ye)y

b y| _ | Y
subject to [u} = |:Uf:| g

where g solves

J(u,y)

arg min  [|g]13
g
Up Uini
subject to Y, | g = | Uini
Uf u

= feasible set of ID & MPC
C feasible set for DeePC

= DeePC < MPC + A, ID

“easier to learn control policies
from data rather than models”
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application: end-to-end
automation in energy systems



Grid-connected converter control

Task: control converter (nonlinear, noi-
sy & constrained) without a model of
the grid, line, passives, or inner loops

R Tgave Line |
_abe, _smbey, 1
{K} Ujpe Vive ! Uspe
Lr i e
Cr L, “a AC Grid
hree-Phase 1| Lo i ]
VsC e L Power Part
abe I
dq
Current Control Loop

’, Control Part

npis

DeePC tracking constant dg-frame
references subject to constraints

w| |uz

Va(p.w.)

Vylpu.) 00 :
I
| Lime(s) |
| |
207 : : DeePC|
(p.w) 12 ! ! AWAWA
fa(poa) 107 T
05f \/ VARV
oop Mt o b oon ]
0.0 0;2 04 06 | 08 1;0 1.2 1.4
I tlimots) X )
open | inject noise, , activate
loop !collect datal! I DeePC
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Effect of regularizations

108 1200
- DeePC
8 1000 f Sys ID + MPC
c i
'S 10° 8
1S c
] o
° ]
¢ b
£ 1ot £
O a
% o
a
10°
10 10°
DeePC time-domain cost Optimization cost
2 2 2 2
=D llye — Tk”Q + |lukllz = 2 llyk — 776”@"’||ulc||1-?,‘|'>‘g||9||2

(closed-loop measurements) (closed-loop measurements)
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Data length

Tini = 40 , Tiyture = 30
—— Sys ID + MPC

DeePC (T = 500)
—— DeePC (T = 330)
— I =1.0pu, I =0

x104

N

-
o

DeePC time-domain cost
o
o -

0 s : : ! : X
200 400 600 800 1000 1200 1400 1600

T

works like a charm for T large, but
— Cal’d(g) =T — Tini — Tiuture + 1
— (possibly?) prohibitive on uDSP

Va(p.u.)

Vy(pa) N

Ig{pa)

0.2

0.4

06 08
time(s)

1.0

0.0 012 014 0:6 0f8 1.0
time(s)
20} ' ' ' i
15
1.0
0.5F
0.0
0.0 0j2 0?4 0j6 OjS 1.0
time(s)
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Power system case study

extrapolation from
previous case study:
const. voltage — grid

t, s

complex 2-area power
system: large (n~102),
nonlinear, noisy, stiff, &
with input constraints

0 2 4
time(s)

9 3
Line 9-3 i@:

(no control )

Pric—Line(p-u.)

control objective: —

damping of inter-area Cnest P fir)
R R . Line 6-7-2 ."I Line 7-8-2

oscillations via HVDC ¥ L, W oD Vi

real-time closed-loop MPC & DeePC become prohibitive (on laptop)
— choose T, Tini, and Tiyyre Wisely
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Choice of time constants

5 ors) 1 — choose T sufficiently large
j=1)
5 osof — short horizon Tiytyre =~ 10
2 ozl Toi = 200, Trome =804 — Lini = 10 estimates sufficiently
= 0 2 1 6 8 10 12 14 rich model complexity
{ime(s)
e : : : : : : % 4000
5 o075 3
= .E 3500
= £
£ 050 3000
= £
i 0.25¢ Tini = 10 Tfuture = 10} S 2900
& i i . S 2000
0 2 4 6 8 10 12 14 T
time(s) E 1500
0 50 100 150 200 250
= , ; : : T T Tini
:,f 0.75
= time-domain cost
£ 0.50 F 9 2
: = 2k lyr = rrllg + llusllg
-FE 0.25f Tini =5, Truture = 10
& s+ %> —,, (closed-loop measurements)

time(s) 3334



Summary & conclusions -

¢ fundamental lemma from behavioral systems
® matrix time series serves as predictive model °
¢ data-enabled predictive control (DeePC)

certificates for deterministic LTI systems
distributional robustness via regularizations

certificates for nonlinear & stochastic setup
adaptive extensions, explicit policies, ...

v
v
v outperforms ID + MPC in optimization metric
-
-
—

applications to building automation, bio, etc.

Why have these Willems '07: “IMPC] has perhaps too little system
powerful ideas theory and too much brute force computation in it.”
not been mixed The other side often proclaims “behavioral systems

long before ? theory is beautiful but did not prove utterly useful”
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