

Online Scalable Learning Adaptive to Unknown Dynamics and Graphs

Y. Shen

Georgios B. Giannakis

Dept. of ECE and Digital Tech. Center, University of Minnesota

Acknowledgments: NSF 1500713,1711471, NIH 1R01GM104975-01 Huawei Inc, gift 2018; and Prof. Geert Leus

T. Chen

Roadmap

- Motivation and prior art
- Multi-kernel learning (MKL) via random feature (RF) approximation
- Online MKL with RF in environments with unknown dynamics
- Performance via regret analysis and real data tests
- Online MKL over graphs

Motivation

Nonlinear function models widespread in real-world applications

Nonlinear dimension reduction Nonlinear classification

Nonlinear regression

Challenges and opportunities

Massive scale

Unknown nonlinearity

Unknown dynamics

Learning functions from data

Goal: Given data $\{(\mathbf{x}_t, y_t)\}_{t=1}^T$, find f to model $y_t = f(\mathbf{x}_t) + e_t$

Ex1. Regression: $y_t = \boldsymbol{\theta}^{\top} \mathbf{x}_t + e_t$ Curve fitting for e.g. temperature forecasting

Ex2. Classification: $y_t = \text{sign}(\boldsymbol{\theta}^{\top} \mathbf{x}_t + \mathbf{b})$ For e.g., disease diagnosis

- Even unsupervised tasks boil down to function learning
 - E.g., dimensionality reduction, clustering, anomaly detection ...

Learning functions with kernels

Goal: Given data $\{(\mathbf{x}_t, y_t)\}_{t=1}^T$, find f to model $y_t = f(\mathbf{x}_t) + e_t$

$$y_t = f(\mathbf{x}_t) + e_t$$

Reproducing kernel Hilbert space (RKHS) $\mathcal{H} := \{f | f(\mathbf{x}) = \sum \alpha_t \kappa(\mathbf{x}, \mathbf{x}_t) \}$ kernel

$$\hat{f} = \arg\min_{f \in \mathcal{H}} \frac{1}{T} \sum_{t=1}^{T} \mathcal{C}(f(\mathbf{x}_t), y_t) + \lambda \Omega \left(||f||_{\mathcal{H}}^2 \right)$$

$$\cos t \qquad \text{regularizer}$$

Ex. Gaussian (RBF) kernel $\kappa(\mathbf{x}, \mathbf{x}_t) = \kappa(\mathbf{x} - \mathbf{x}_t) = \exp(-\|\mathbf{x} - \mathbf{x}_t\|_2^2/\sigma^2)$

 $\sigma = 0.6$

 $\sigma = 1$

Q1. Efficient solvers?

Q2. Choice of proper kernel?

Solving for learning functions

$$\hat{f}(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t \kappa(\mathbf{x}, \mathbf{x}_t) := \boldsymbol{\alpha}^{\top} \mathbf{k}(\mathbf{x})$$

Representer Thm.
$$\hat{f}(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t \kappa(\mathbf{x}, \mathbf{x}_t) := \boldsymbol{\alpha}^\top \mathbf{k}(\mathbf{x})$$
$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^T} \ \frac{1}{T} \sum_{t=1}^{T} \mathcal{C}(\boldsymbol{\alpha}^\top \mathbf{k}(\mathbf{x}_t), y_t) + \lambda \Omega\left(\boldsymbol{\alpha}^\top \mathbf{K} \boldsymbol{\alpha}\right)$$

$$[\mathbf{k}(\mathbf{x})]_t = \kappa(\mathbf{x}, \mathbf{x}_t)$$

 $[\mathbf{K}]_{t,t'} = \kappa(\mathbf{x}_t, \mathbf{x}_{t'})$

ho $\alpha \in \mathbb{R}^T$, complexity grows with T Curse of Dimensionality (CoD)!

Ex. L2-norm cost and L2-norm regularizer: ridge regression $\mathcal{O}(T^3)$

Not scalable; and not suitable for streaming data

Budget-constrained approaches

- Budget-constrained kernel-based learning (KL-B) [Kivinen et al' 04], [Dekel et al' 08]
 - Keep B data samples in memory

Challenges: choice of *B*? Adaptivity to unknown dynamics?

Random features for kernel-based learning

Key idea: View normalized shift-invariant kernels as characteristic functions

$$\kappa(\mathbf{x}_t, \mathbf{x}_{t'}) = \kappa(\mathbf{x}_t - \mathbf{x}_{t'}) = \int \pi_{\kappa}(\mathbf{v}) e^{j\mathbf{v}^{\top}(\mathbf{x}_t - \mathbf{x}_{t'})} d\mathbf{v} := \mathbb{E}_{\mathbf{v}} \left[e^{j\mathbf{v}^{\top}(\mathbf{x}_t - \mathbf{x}_{t'})} \right]$$

Draw *D* random vectors from pdf $\pi_{\kappa}(\mathbf{v})$ to find kernel estimate

$$\hat{\kappa}_c(\mathbf{x}_t, \mathbf{x}_{t'}) := \frac{1}{D} \sum_{i=1}^D e^{j\mathbf{v}_i^{\top}(\mathbf{x}_t - \mathbf{x}_{t'})} \qquad e^{j\mathbf{v}_i^{\top}\mathbf{x}} = \cos(\mathbf{v}_i^{\top}\mathbf{x}) + j\sin(\mathbf{v}_i^{\top}\mathbf{x})$$

Unbiased estimator $\hat{\kappa}(\mathbf{x}_t, \mathbf{x}_{t'}) = \mathbf{z}_{\mathbf{V}}^{\top}(\mathbf{x}_t)\mathbf{z}_{\mathbf{V}}(\mathbf{x}_{t'})$ via 2Dx1 random feature (RF) vector

$$\mathbf{z}_{\mathbf{V}}(\mathbf{x}) = \frac{1}{\sqrt{D}} \left[\sin(\mathbf{v}_{1}^{\top}\mathbf{x}), \dots, \sin(\mathbf{v}_{D}^{\top}\mathbf{x}), \cos(\mathbf{v}_{1}^{\top}\mathbf{x}), \dots, \cos(\mathbf{v}_{D}^{\top}\mathbf{x}) \right]^{\top}$$

Function estimate

$$\hat{f}^{RF}(\mathbf{x}) = \sum_{t=1}^{T} \alpha_t \hat{\kappa}(\mathbf{x}_t, \mathbf{x}) = \sum_{t=1}^{T} \alpha_t \mathbf{z}_{\mathbf{V}}^{\top}(\mathbf{x}_t) \mathbf{z}_{\mathbf{V}}(\mathbf{x}) := \boldsymbol{\theta}^{\top} \mathbf{z}_{\mathbf{V}}(\mathbf{x})$$

$$\{\mathbf{v}_i\}_{i=1}^D$$
RFs

$$\frac{1}{D}\sum$$

$$\Rightarrow$$

$$\hat{\kappa}$$
 \hat{f}^{RF}

Multi-kernel learning

lacksquare Given dictionary of kernels $\{\kappa_p\}_{p=1}^P$, let $f(\mathbf{x}) := \sum_{p=1}^P \bar{w}_p f_p(\mathbf{x})$

$$\min_{\{\bar{w}_p\}, \{f_p \in \mathcal{H}_p\}} \frac{1}{T} \sum_{t=1}^{T} \mathcal{C}\left(\sum_{p=1}^{P} \bar{w}_p f_p(\mathbf{x}_t), y_t\right) + \lambda \Omega\left(\left\|\sum_{p=1}^{P} \bar{w}_p f_p\right\|_{\bar{\mathcal{H}}}^2\right)$$
s. to
$$\sum_{p=1}^{P} \bar{w}_p = 1, \ \bar{w}_p \ge 0$$

- Richer space of functions, but batch MKL also challenged by the CoD
- □ Idea: RFs to the rescue $\hat{f}_p(\mathbf{x}) = \boldsymbol{\theta}_p^{\top} \mathbf{z}_{\mathbf{V}_p}(\mathbf{x})$

$$\min_{\{\bar{w}_p\},\{\boldsymbol{\theta}_p\}} \frac{1}{T} \sum_{t=1}^{T} \sum_{p=1}^{P} \bar{w}_p \mathcal{C}\left(\boldsymbol{\theta}_p^{\top} \mathbf{z}_{\mathbf{V}_p}(\mathbf{x}), y_t\right) + \lambda \sum_{p=1}^{P} \bar{w}_p \Omega\left(\|\boldsymbol{\theta}_p\|^2\right)$$

ightharpoonup Online loss per kernel-based learner $\hat{f}_p(\mathbf{x}_t)$

$$\mathcal{L}_t(f_p(\mathbf{x}_t)) := \mathcal{C}(\boldsymbol{\theta}_p^{\top} \mathbf{z}_p(\mathbf{x}_t), y_t) + \lambda \Omega(\|\boldsymbol{\theta}_p\|^2)$$

Random feature based multi-kernel learning

□ Raker: Acquire data vector **x**, per slot t, and run

S1. Parameter update

$$\boldsymbol{\theta}_{p,t+1} = \boldsymbol{\theta}_{p,t} - \eta \nabla \mathcal{L}_t(\boldsymbol{\theta}_{p,t}^{\top} \mathbf{z}_p(\mathbf{x}_t), y_t)$$

S2. Weight update

KL-divergence

$$w_{p,t+1} = \arg\min_{w_p} \eta \mathcal{L}_t \left(\hat{f}_{p,t}^{RF}(\mathbf{x}_t) \right) (w_p - w_{p,t}) + w_p \log(w_p / w_{p,t})$$
$$w_{p,t+1} = w_{p,t} e^{-\eta \mathcal{L}_t \left(\hat{f}_{p,t}^{RF}(\mathbf{x}_t) \right)} \quad \bar{w}_{p,t+1} = w_{p,t+1} / \sum_{p} w_{p,t+1}$$

S3. Function update

$$\hat{f}_{p,t+1}^{\text{RF}}(\mathbf{x}_{t+1}) = \boldsymbol{\theta}_{p,t+1}^{\top} \mathbf{z}_{p}(\mathbf{x}_{t+1}) \qquad \hat{f}_{t+1}^{\text{RF}}(\mathbf{x}_{t+1}) := \sum_{p=1}^{P} \bar{w}_{p,t+1} \hat{f}_{p,t+1}^{\text{RF}}(\mathbf{x}_{t+1})$$

Intuition and complexity of Raker

function update

$$f_{1,i}(\mathbf{x}_t)$$
 $f_{P,i}(\mathbf{x}_t)$

$$\hat{f}_{p,t+1}^{\mathrm{RF}}(\mathbf{x}_{t+1}) = \boldsymbol{\theta}_{p,t+1}^{\top} \mathbf{z}_{p}(\mathbf{x}_{t+1})$$

- Online (ensemble) learning with expert advice
 - ightarrow Self-improvement of each expert (by updating $oldsymbol{ heta}_{p,t}$ per RF kernel estimator)
- Per iteration complexity comparison with online (O) MKL and budgeted (B) MKL

MKL	OMKL	OMKL-B	Raker
$\mathcal{O}(t^3P)$	$\mathcal{O}(tP)$	$\mathcal{O}(BP)$	$\mathcal{O}(DP)$

Adaptive Raker for unknown dynamics

- **Q.** What if the function changes over time?
 - Challenge: Optimal stepsize depends on the dynamics what if unknown?
 - Idea: Combine weighted Raker learners with different step sizes

AdaRaker steps: A multiresolution design

- **s1.** Add new Rakers at the beginning of intervals with progressively larger lengths
- **s2**. $\hat{f}_t^{(I)}$: Raker active at interval *I*, with stepsize $\eta^{(I)} := \min\{1/2, \eta_0/\sqrt{|I|}\}$

AdaRaker in action

- **S1.** Obtain $\hat{f}_t^{(I)}(\mathbf{x}_t)$ from active Raker learners, and incur loss $\mathcal{L}_t(\hat{f}_t^{(I)}(\mathbf{x}_t))$
- **S2.** Use relative loss $r_t^{(I)} := \mathcal{L}_t(\hat{f}_t(\mathbf{x}_t)) \mathcal{L}_t(\hat{f}_t^{(I)}(\mathbf{x}_t))$ to update $\gamma_{t+1}^{(I)} = \gamma_t^{(I)} e^{-\eta^{(I)} r_t^{(I)}}$
- **S3.** Update Raker learners $\{\hat{f}_{t+1}^{(I)}\}$, to obtain $\hat{f}_{t+1}(\mathbf{x}_{t+1}) = \sum_{I=1}^{I_{\text{max}}} \bar{\gamma}_{t+1}^{(I)} \hat{f}_{t+1}^{(I)}(\mathbf{x}_{t+1})$

Performance analysis: Static regret

$$\operatorname{Reg}_{\mathcal{A}}^{s}(T) := \sum_{t=1}^{T} \mathcal{L}_{t}(\hat{f}_{t}(\mathbf{x}_{t})) - \min_{f \in \bigcup_{p=1}^{P} \mathcal{H}_{p}} \sum_{t=1}^{T} \mathcal{L}_{t}(f(\mathbf{x}_{t}))$$

- Online decisions benchmarked by best fixed strategy in hindsight
- ightharpoonup Sublinear $\mathrm{Reg}_T=\mathbf{o}(T)$ implies algorithm $\mathcal A$ incurs no regret "on average"
- (a1) Per slot loss $\mathcal{L}(\boldsymbol{\theta}^{\top}\mathbf{z}_{\mathbf{V}}(\mathbf{x}_t), y_t))$ is convex and bounded
- (a2) Gradient $\nabla \mathcal{L}(\boldsymbol{\theta}^{\top} \mathbf{z}_{\mathbf{V}}(\mathbf{x}_t), y_t)$ is bounded
- (a3) Kernels $\{\kappa_p\}_{p=1}^P$ are shift-invariant, and bounded
- Static regret of Raker

Theorem 1. Under (a1)-(a3), Raker attains $\operatorname{Reg}^{\mathrm{s}}_{\mathrm{Raker}}(T) = \mathcal{O}(\sqrt{T})$ w.h.p.

Switching regret

Best switching solution

$$\begin{cases} \{\check{f}_t^*\}_{t=1}^T \in \bigcup_{p \in \mathcal{P}} \mathcal{H}_p \middle| \sum_{t=1}^T \mathbb{1}(\check{f}_t^* \neq \check{f}_{t-1}^*) \leq m \end{cases}$$
 Reg $_{\mathcal{A}}^m(T) := \sum_{t=1}^T \mathcal{L}_t(\hat{f}_t(\mathbf{x}_t)) - \sum_{t=1}^T \mathcal{L}_t(\check{f}_t^*(\mathbf{x}_t))$ max. number of switches

Switching regret of AdaRaker

Theorem 2. AdaRaker achieves $\operatorname{Reg}_{AdaRaker}^m(T) \leq \mathcal{O}(\sqrt{Tm})$ w.h.p.

$$ightharpoonup$$
 If $m = \mathbf{o}(T) \Rightarrow \mathrm{Reg}_{\mathrm{AdaRaker}}^m(T) = \mathbf{o}(T)$

Take home: AdaRaker incurs on average no regret relative to the optimal switching solutions in unknown dynamics

Synthetic test

- \square Switching points: $t = \{8,000, 18,000, 26,000\}$
- \Box RBF kernels with $\sigma^2=\{0.1,1,10\}$, B=D=50

	Runtime (sec)
AdaMKL	318.52
OMKL	157.10
RBF	47.83
Polynomial	28. 27
OMKL-B	4.02
Raker	1.53
AdaRaker	24.2

AdaRaker adapts fastest, Raker runs fastest

In-home safety monitoring of elderly

- $lue{x}_t$: received signal strength (RSS) measurements from 4 anchor nodes
- $lue{y}_t$: Does trajectory lead to a change of rooms?

Activity monitoring for health and fitness

- $\mathbf{Q} \mathbf{x}_t$: triaxial acceleration and angular velocity
- $ightharpoonup y_t$: type of activity

Forecasting air pollution in smart cities

X_t: amount of different chemicals in the air

 \mathbf{Q} y_t : amount of PM2.5 in the air

Energy consumption in smart homes

Moshe Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

Contributions in context

- Batch function learning using kernels
 - Single kernel-based approach [Williams et al' 01], [Sheikholeslami et al' 17], [Rahimi-Recht' 07], [Felix et al' 16]
 - MKL approaches [Lanckriet et al' 04], [Bach' 08], [Cortes et al' 09], [Gonen-Alpaydin' 11]
- Online function learning using kernels
 - Budget-constrained approaches, e.g., [Kivinen et al' 04], [Dekel et al' 08]
 - RF-based single kernel learning [Lu et al'16], [Bouboulis et al'17]
- Our contributions
 - Online scalable learning adaptive to unknown dynamics and graphs
 - Data-driven multi-kernel selection
 - Static and dynamic regret bounds

Learning over graphs

Social networks

Internet

Autonomous Energy Systems

Financial markets

Brain networks

Gene/protein-regulatory nets

- Challenges: unavailable nodal attributes, privacy concerns, growing networks
- Desiderata: Online graph-adaptive learning with scalability and privacy

Learning graph signals

Q1. What if data are samples on vertices of a graph?

$$y_m = s_{v_m} + e_m \; , \; \; m = 1, \dots, M$$

Adjacency matrix : $[\mathbf{A}]_{ij} \neq 0$ if v_i is connected with v_j

Goal. Given adjacency matrix \mathbf{A} , and $\{y_m\}_{m=1}^M$, find $\{s_{v_n}=f(v_n)\}_{n=1}^N$ M < N

Q2. How are the graph signals related to the graph topology?

Kernel-based learning over graphs

Graph-induced RKHS $\mathcal{H}_{\mathcal{G}} := \{f | f(v) = \sum_{n} \alpha_n \kappa(v, v_n) \}$

$$\min_{f \in \mathcal{H}_{\mathcal{G}}} \frac{1}{M} \sum_{i=1}^{M} \mathcal{C}(f(v_i), y_i) + \lambda \Omega \left(\|f\|_{\mathcal{H}}^2 \right)$$

 $> \text{ Representer Thm. } \hat{f}(v) = \sum_{m=1}^{M} \alpha_m \kappa(v, v_m) := \boldsymbol{\alpha}^\top \mathbf{k}(v)$

 $\mathbf{k}(v_i)$: *i* th row of

- Graph kernels : e.g. $\mathbf{K} = \mathbf{L}^{\dagger}$, with Laplacian $\mathbf{L} := \operatorname{diag}(\mathbf{A}\mathbf{1}) \mathbf{A}$
 - \succ Functions of \mathbf{L}^{\dagger} can capture diffusion (DF) or bandlimited (BL) kernels
 - Rely on the entire **A**, and lead to complexity $\mathcal{O}(N^3)$

Q3. What if new nodes join? Scalability and adaptivity? Privacy concerns?

RF-based learning over graphs

Our idea: treat nth column/row of adjacency (a_n) as feature of node n

$$y_n = f(\mathbf{a}_n) + e_n$$

■ MKL with RF-approximation

$$\hat{f}(v_n) = \hat{f}(\mathbf{a}_n) = \sum_{p=1}^{P} \bar{w}_p \hat{f}_p^{RF}(\mathbf{a}_n)$$

$$\hat{f}_p^{RF}(\mathbf{a}_n) = \sum_{m=1}^{M} \alpha_m \hat{k}_p(\mathbf{a}_m, \mathbf{a}_n) := \boldsymbol{\theta}_p^{\top} \mathbf{z}_p(\mathbf{a}_n)$$

$$\mathbf{z}_{\mathbf{V}}(\mathbf{a}_n) := \frac{1}{\sqrt{D}} \left[\sin(\mathbf{v}_1^{\top} \mathbf{a}_n), \dots, \sin(\mathbf{v}_D^{\top} \mathbf{a}_n), \cos(\mathbf{v}_1^{\top} \mathbf{a}_n), \dots, \cos(\mathbf{v}_D^{\top} \mathbf{a}_n) \right]^{\top}$$

Graph-adaptive Raker

- $lue{}$ GradRaker: Acquire N x1 adjacency vector \mathbf{a}_t per slot t , and run
- **\$1.** Parameter update for each kernel-based learner

$$\boldsymbol{\theta}_{p,t+1} = \boldsymbol{\theta}_{p,t} - \eta \nabla \mathcal{L}_t(\boldsymbol{\theta}_{p,t}^{\top} \mathbf{z}_p(\mathbf{a}_t), y_t)$$

S2. Weight update

$$w_{p,t+1} = w_{p,t}e^{-\eta \mathcal{L}_t \left(\hat{f}_{p,t}^{RF}(\mathbf{a}_t)\right)}$$
 $\bar{w}_{p,t+1} = w_{p,t+1} / \sum_p w_{p,t+1}$

S3. Function update

$$\hat{f}_{t+1}^{\text{RF}}(\mathbf{a}_{t+1}) := \sum_{p=1}^{P} \bar{w}_{p,t+1} \hat{f}_{p,t+1}^{\text{RF}}(\mathbf{a}_{t+1}) \qquad \hat{f}_{p,t+1}^{\text{RF}}(\mathbf{a}_{t+1}) = \boldsymbol{\theta}_{p,t+1}^{\top} \mathbf{z}_{p}(\mathbf{a}_{t+1})$$

Merits of GradRaker

- Sequential and scalable sampling and updates with theoretical guarantees
 - Sublinear regret
- ☐ Privacy-preserving scheme for each node with encrypted nodal information

$$\mathbf{z}_{\mathbf{V}}(\mathbf{a}_n) := \frac{1}{\sqrt{D}} \left[\sin(\mathbf{v}_1^{\mathsf{T}} \mathbf{a}_n), \dots, \sin(\mathbf{v}_D^{\mathsf{T}} \mathbf{a}_n), \cos(\mathbf{v}_1^{\mathsf{T}} \mathbf{a}_n), \dots, \cos(\mathbf{v}_D^{\mathsf{T}} \mathbf{a}_n) \right]^{\mathsf{T}}$$

■ Real-time prediction for newly joining nodes

$$\hat{f}_p^{RF}(v_{\text{new}}) = \hat{\boldsymbol{\theta}}_p^{\top} \mathbf{z}_p(\mathbf{a}_{\text{new}})$$

- ☐ Generalization to multi-layer networks or multi-hop neighbors
 - Adaptively combine layer-based learners

Temperature forecasting

- Nodes: 89 measurement stations in Switzerland
- Edge weights obtained as in [Dong et al'14]
- ☐ Signals: temperatures between 1981 and 2010

Contributions in context

- Graph-kernel/filter based learning
 - Single kernel-based approach
 e.g., [Kondor et al 02], [Zhu et al 04], [Chen et al' 14] [Merkurjev et al' 16], [Segarra et al' 17]
 - MKL approaches [Romero et al' 17], [loannidis et al' 18]
- Graph based semi-supervised learning e.g., [Cortes et al' 06], [Berberidis et al' 18]
- □ Deep learning e.g., [Perozzi et al 14], [Kipf et al' 16], [Grover et al' 16]

Our contributions

- Sequential scalable function learning for growing networks
- Privacy-preserving scheme based on encrypted nodal information
- Analysis in terms of regret bounds

Conclusions

□ (Ada)Raker

- Adaptivity, scalability, and robustness to unknown dynamics
- Sublinear regret relative to the best time-varying function approximant

□ GradRaker

- Sequential sampling and evaluation of nodal attributes
- Adaptivity, scalability, privacy, and theoretical guarantee

□ Representative applications

- Elderly safety monitoring: Movement prediction, activity recognition
- Smart cities: Air pollution, energy consumption, temperature prediction
- E-commerce, financial, social, and brain networks

Thank You!