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ILLINOTIS



The What and the Why?

Please ask questions!

The What? Interacting particle system as an algorithm

data
estimate
Inter. particle
control system

(Algorithm)

Example of an interacting particle system: Kuramoto oscillators

Example of an algorithm: particle filter
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The What and the Why?

Please ask questions!

The What? Interacting particle system as an algorithm

data

estimate

Inter. particle
control system

(Algorithm)

The Why?

m Applicable to general class of models

nonlinear, non-Gaussian
even simulation models

m Possible benefits in high-dimensional settings
m An over-looked topic (may be?) in Control Theory (but important in related fields)
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Outline
| will focus on algorithms for the estimation problem

Kalman filter

Ensemble Kalman filter <= An interacting particle system

Feedback particle filter

=

g Learning and optimal control <= Only a movie!
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Key takeaway
Please ask questions!

Estimation algorithm is a feedback control law:

[control] = [gain] - [error] (proportional control)
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Key takeaway
Please ask questions!

Estimation algorithm is a feedback control law:

[control] = [gain] - [error] (proportional control)

The question: What is the gain?

Answer: Solution to an optimization problem.

Seems appropriate given all the Optimization talent in the room!
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Bayesian Inference/Filtering
Mathematics of prediction: Bayes' rule

Signal (hidden): X X ~P(X) (prior)
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Bayesian Inference/Filtering
Mathematics of prediction: Bayes' rule

Signal (hidden): X  X~P(X) (prior)
Observation (known): Y Y ~P(Y|X) (sensor model)

Problem: What is X ?

Bayes' rule:  P(X|Y) «< P(Y|X)P(X)
~—— —~—

Posterior Prior
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Bayesian Inference/Filtering
Mathematics of prediction: Bayes' rule

Signal (hidden): X X ~P(X) (prior)

Observation (known): Y Y ~P(Y|X) (sensor model)

Problem: What is X ?

Bayes' rule:  P(X|Y) «< P(Y|X)P(X)
—— ——

Posterior Prior

Key takeaway: Bayes' rule = proportional ([gain] - [error]) control!
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Classical Applications
Target state estimation

Estimation with
Applications to

Tracking and
Navigation
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Nonlinear Filtering
Mathematical Problem

Signal model:  dX; = a(X;)dt+ op(X;)dB;, Xo ~po(+)

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, 2010.
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Nonlinear Filtering
Mathematical Problem

Signal model:  dX; = a(X;)dt + op(X;) dB;, Xo ~po(-)

Observation model:  dZ; = h(X,)dt+ dW,;

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, 2010.

Controlled Interacting Particle Systems P. G. Mehta




Nonlinear Filtering
Mathematical Problem

Signal model:  dX; = a(X;)dt + op(X;) dB;, Xo ~ po(*)

Observation model:  dZ; = h(X;)dt+ dW,;

d
or if you prefer Y;:= EZI = h(X;) + white noise

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, 2010.
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Nonlinear Filtering
Mathematical Problem

Signal model:  dX; = a(X;)dt+ op(X;)dB;, Xo ~po(*)
Observation model:  dZ; = h(X;)dr + dW;

Problem: What is X;? given obs. till timer=: %

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, 2010.
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Nonlinear Filtering
Mathematical Problem

Signal model:  dX; = a(X;)dt+ op(X;) dB;, Xo ~po(+)
Observation model:  dZ; = h(X;)dt+ dW,;
Problem: What is X;? given obs. till timer=: %

Answer in terms of posterior: P (X;|27) =: p(x,1).

p*(z,1)

ot R

A. Bain and D. Crisan, Fundamentals of Stochastic Filtering. Springer, 2010.
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Problem: What is X;? given obs. till timer=: %

Answer in terms of posterior: P (X;|27) =: p(x,1).

P*(x, 1)

P(X, €A Z) = /A p(x,1)dx

BG40 20) = [ f(p(en)dx

ot R
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Outline

Kalman filter

Ensemble Kalman filter

Feedback particle filter
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Filtering problem: Linear Gaussian setting

Model:
Signal process: dX; =AX,dr+ ogdB; (linear dynamics)
Observation process: dZ; = HX;dr+ dW; (linear observation)

Prior distribution:  Xg ~ A4 (mg,X) (Gaussian prior)

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory (1961).
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Filtering problem: Linear Gaussian setting

Model:
Signal process: dX; = AX,dr+ opdB; (linear dynamics)

Observation process: dZ; = HX;dt+ dW; (linear observation)

Prior distribution:  Xg ~ A" (mg, %) (Gaussian prior)
Problem: Find conditional probability distribution, P(X;|Z)
Solution: Kalman-Bucy filter — P(X;|2;) is Gaussian .4 (X;,X;)

Update for mean: dX; = AX,dr+K, (dZt—HX,dt)
| —

error

P N l Y;
X = a(Xy) + KI, o+
F e i |
Kalman Filter

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory (1961).
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Filtering problem: Linear Gaussian setting

Model:
Signal process: dX; = AX,dr+ opdB; (linear dynamics)
Observation process: dZ; = HX;dt+ dW; (linear observation)

Prior distribution:  Xq ~ A4 (mg,X) (Gaussian prior)

Problem: Find conditional probability distribution, P(X;| %)
Solution: Kalman-Bucy filter — P(X,|%5) is Gaussian .4 (X;, ;)
Update for mean: dX, = AX;dr+ K, (dZ; — HX,dr)
—_———
error

The question: What is the gain?

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory (1961).
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Filtering problem: Linear Gaussian setting

Model:
Signal process: dX; =AX,dr+ opdB; (linear dynamics)
Observation process: dZ; = HX;dr+ dW; (linear observation)

Prior distribution:  Xg ~ A4 (mg,X) (Gaussian prior)

Problem: Find conditional probability distribution, P(X;| %)

Solution: Kalman-Bucy filter — P(X;|25) is Gaussian .4 (X;, ;)

Update for mean: dX, = AX;dr+ K, (dZ; — HX, dr)
——_————

error
. dx, . N .
Update for covariance: e Ric(X;) (Riccati equation)

Kalman gain: K;:= Z,HT

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory (1961).
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Problems and research directions

Classical settings: additional issues due to
uncertainties in the signal model
= interacting multiple model (Kalman) filter [Blom and Bar-Shalom. IEEE TAC (1988).]

uncertainties in the measurement model

= data association (Kalman) filter [Bar-Shalom. Automatica (1975).]
» adaptive (Kalman) filter

communication constraints
m distributed Kalman filters with consensus like terms [Olfati-Saber; others]

Analysis: Filter stability [Ocone and Pardoux SICON (1996).]

Requires controllability of (A,0p) and observability of (A,H).
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Problems and research directions

Classical settings: additional issues due to

uncertainties in the signal model
= interacting multiple model (Kalman) filter [Blom and Bar-Shalom. |IEEE TAC (1988).]

uncertainties in the measurement model
= data association (Kalman) filter [Bar-Shalom. Automatica (1975).]
= adaptive (Kalman) filter

communication constraints
m distributed Kalman filters with consensus like terms [Olfati-Saber; others]

Modern settings: machine learning problems involving time-series data

M no good signal models!
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Outline

Kalman filter

Ensemble Kalman filter

Feedback particle filter
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Kalman-Bucy filter
Implementation in high-dimensions

Kalman-Bucy filter: P(X,| %) is Gaussian ¥ (X;,%;)

Update for mean: dX, = AX,dr+K,(dZ, — HX,dr)

Dy
Update for covariance: 9 _ Ric(%y)

(Ricatti equation)

Kalman gain: K :=%,H'

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory, 1961

Controlled Interacting Particle Systems
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Kalman-Bucy filter
Implementation in high-dimensions

Kalman-Bucy filter: P(X,| %) is Gaussian ¥ (X;,%;)

Update for mean: dX, = AX,dr+K,(dZ, — HX,dr)

Dy
Update for covariance: & Ric(Z;)

(Ricatti equation)

Kalman gain: K :=%,H'

Computation:

if state dimension isd = covariance matrix is d X d

= computational complexity is O(d*)

= This becomes a problem in high-dimensional settings
(e.g weather prediction)

R. E Kalman and R. S Bucy. New results in linear filtering and prediction theory, 1961
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Ensemble Kalman filter
A controlled interacting particle system

Idea: approximate the posterior P(X;|%;) using particles {X/}Y |

1 N
P €412) = [ plx.fjdrn v L Lrjea
LA
E(0)120) = [ S @pten e 1 r0)

i

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model (1994).
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation (2012).
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Ensemble Kalman filter
A controlled interacting particle system

Idea: approximate the posterior P(X;|%;) using particles {X/}Y |

HX{dr+ Ny, HX]
2

data assimilation step

dX; = AXjdi+opdB] + K/ (dz:~ ) Xp & po
——_— ———

(simulation)

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model (1994).
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation (2012).
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Ensemble Kalman filter
A controlled interacting particle system

Idea: approximate the posterior P(X;|%;) using particles {X/}Y |

HX{dr+ Ny, HX]
2

data assimilation step

dX; = AXjdi+ oy B} + K/"(dz:~ ) Xp'% po
——_— ———

(simulation)

Computations: computational complexity is O(Nd) — efficient when d >> N

1Y e
Consistency: [under additional assumptions] mt(N) = ZX,’ (Ivi)) E(X:|Z7)
i=1

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model (1994).
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation (2012).
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Ensemble Kalman filter
A controlled interacting particle system

Idea: approximate the posterior P(X;|%;) using particles {X/}Y |

HX{dr+ Ny, HX]
2

data assimilation step

dX; = AXjdi+opdB] + K/ (dz:~ ) Xp & po
——_— ———

(simulation)
Computations: computational complexity is O(Nd) — efficient when d >> N
(N) 1M (N—o0)
Consistency: [under additional assumptions] m; ’ := N ZX,’ — E(X:|Z7)

Computing the gain:

empirical Kalman gain: K,<N) = E,(N)HT
ical covariance: =™ = 1" (xi — ™) (xi — T
empirical covariance: X; '_N—ll; g =ty

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic model (1994).
K. Bergemann and S. Reich. An ensemble Kalman-Bucy filter for continuous data assimilation (2012).
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Literature review
Background on ensemble Kalman filter

EnKf formulation:
= EnKF based on perturbed observation (Evensen, 1994)
= The square root EnKF (Whitaker et. al. 2002)
m Continuous-time formulation (Bergemann and Reich. 2012)
m EnKF as special case of FPF (Yang et. al. 2013)
= Optimal transport formulation (Taghvaei and M., 2016)

Error analysis (requires additional assumptions):

1
B m.s.e converges as O(ﬁ) for any finite time (Le Gland et. al. 2009, Mandel et. al.
2011, Kelly et. al. 2014)

1
®m m.s.e converges as O(N) uniform in time (Del Moral, et. al. 2016, de Wiljes et. al.
2016, Bishop and Del Moral, 2017)
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Outline

Kalman filter

[control] = K;(dZ, — HX;)

Ensemble Kalman filter

HXi+N~'Y¥ | HX] N

[control] = K,(N)(dZ, - 3 )

Feedback particle filter (for nonlinear non Gaussian problems)

[control] =27
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Feedback Particle Filter
A numerical algorithm for nonlinear filtering

Problem:

Signal model: dXt = a(Xt) dr+ G(Xt) dBt
Observation model:  dZ, = h(X;)dr+ dW,

Posterior distribution P(X;|Z;)?

Yang, M., Meyn. Feedback particle filter. IEEE Trans. Aut. Control (2013)
Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016)

Xo ~ po

Zhang, Taghvaei, M. Feedback particle filter on Riemannian manifolds and Lie groups. IEEE Trans. Aut. Control (2018)

Controlled Interacting Particle Systems
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Feedback Particle Filter
A numerical algorithm for nonlinear filtering

Problem:

Signal model: dX; = a(X;)dr+ o(X;)dB; Xo ~ Po
Observation model:  dZ, = h(X;)dr+ dW,

Posterior distribution P(X;|Z;)?

Solution: feedback particle filter

h(X}) +E(h(X])| Z)

dX! = a(X!)dt+ o(X})dB +K, (X!) o (dZ; — 5 dr) X} ~po
_—
simulation -

Yang, M., Meyn. Feedback particle filter. IEEE Trans. Aut. Control (2013)
Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016)
Zhang, Taghvaei, M. Feedback particle filter on Riemannian manifolds and Lie groups. IEEE Trans. Aut. Control (2018)

Controlled Interacting Particle Systems P. G. Mehta

13 / 27



Feedback Particle Filter
A numerical algorithm for nonlinear filtering

Problem:

Signal model: dX; = a(X;)dr+ o(X;)dB; Xo ~ Po
Observation model:  dZ; = h(X,)dr+ dW;

Posterior distribution P(X;|%2;)?

Solution: feedback particle filter

X)) +E(h(X])| 2)

) ) o . h )
dX! = a(Xi) dt + o (X7 dBI 1K, (X) o (dZ, — ™ - ) Xi ~ po
N— —
simulation T

approximation:

N .
EFX)120) = fim 3 3 F(X)

Yang, M., Meyn. Feedback particle filter. IEEE Trans. Aut. Control (2013)
Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016)
Zhang, Taghvaei, M. Feedback particle filter on Riemannian manifolds and Lie groups. IEEE Trans. Aut. Control (2018)
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Particle filter
Conventional approach

Idea: approximate the posterior P(X;|2;) using particles {X!}¥ |
dX! = a(Xi)dr + o (X)) dBI, X} py
[ =Mh(X})dZ,, My=1

where M! are referred to as the importance weights.

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
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Particle filter
Conventional approach

Idea: approximate the posterior P(X;|%;) using particles {X/}Y
aX] = a(X))di-+ o (X)) dBl, X5~ po
[ =Mh(X])dZ,, My=1

where Mf are referred to as the importance weights.

approximation:

N . .
EX0120) = fim 3 Y M)

Problems:
High simulation variance in importance weights. This necessitates resampling.
Particle impoverishment for high-dimensional problems — N o< exp(d)

No explicit error correction structure! Where is the ensemble Kalman filter?

N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation (1993).
A. Doucet and A. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen years later (2008).
P. Bickel, B. Li, and T. Bengtsson, Sharp failure rates for the bootstrap particle filter in high dimensions (2008).
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How do these compare?
FPF vs. BPF

10°

i
w —e— BPF =z
8 T g2, —*BPF
= T PRR Y --=-- FPF
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2 & 10
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2 )
£ £
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dimension D dimension D

Reprod uced from: Surace, Kutschireiter, Pfister. How to avoid the curse of dimensionality: scalability of particle filters with and without

importance weights? SIAM Review (2019).

Additional comparisons appear in: A. K. Tilton, S. Ghiotto, and P. G. Mehta. A comparative study of nonlinear filtering techniques. In Proc. 16th Int.
Conf. on Inf. Fusion, pages 1827-1834, Istanbul, Turkey, July 2013.

P. M. Stano, A. K. Tilton, and R. Babuska. Estimation of the soil-dependent time-varying parameters of the hopper sedimentation model: The FPF versus
the BPF. Control Engineering Practice, 24:67-78 (2014).

K Berntorp. Feedback particle filter: Application and evaluation. In 18th Int. Conf. Infor- mation Fusion, Washington, DC, 2015.

Col P. Mehta
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Feedback particle filter
What is the gain function?

Gain is a solution of an optimization problem:

min [ (IV9P () + () ~R)o () pl) ax
0 post.

K=Ve¢

First order optimality condition (E-L equation) is the Poisson equation:

1 o
_Ap¢5:_m ~(P(X)Z/(X))=(h(X)—h) on R?
o K

Linear Gaussian case: Solution is the Kalman gain!

Laugesen, M., Meyn and Raginsky. Poisson equation in nonlinear filtering. SIAM J. Control and Optimization (2015).
Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016).
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(1) Non-Gaussian density, (2) Gaussian density
(1) Nonlinear gain function, (2) Constant gain function = Kalman gain

h(X;) +ilt

(1) FPF:  dX! = a(X!)dr+ op(X})dBi + K, (X!) o (dZ; — dr)

FPF

Controlled Interacting Particle Systems P. G. Mehta 17 / 27



(1) Non-Gaussian density, (2) Gaussian density
(1) Nonlinear gain function, (2) Constant gain function = Kalman gain

I

. . . . WX +h
(1) FPF:  dX; = a(X;)dr+ op(X})dB; + K,(X}) o (dZ; — wdr)
FPF

; ; ; HX! + HX,

(2) Linear Gaussian: dX; =AX;dt+ ogdB;+K,(dZ, — %dz)
EnKF
K(z) K(z)
Ko(X7)
p(a,t) K; = Kalman gain
_ +AETN.
Xi * X B

The linear Gaussian FPF is the square-root form of the EnKF. This square-root form of the EnKF was independently obtained by K. Bergemann and S.
Reich. An ensemble Kalman-Bucy filter for continuous data assimilation (2012).
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Non-Gaussian case
Lets get to approximation!

Gain is a solution of an optimization problem:

min [ (IV9P(x)+ (h(x) ~h)9()) pLx) dn

9<H) ~—~~
post.
¢ € Hy(p,RY)
K=V¢ 10
K(z)
0|
-1 0 1

Existence uniqueness theory in: Yang, Laugesen, M., Meyn. Multivariable Feedback particle filter. Automatica (2016)
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Non-Gaussian case
Lets get to approximation!

Gain is a solution of an optimization problem:

min [ (1VOP () +(h() ~h)g(x)) plx) dv

OcH)}

¢ € Hy(p,R)

K(z)]

d (space of const. fns)

EIK] = [(h(x) — R)p(x)dx

A closed-form formula:
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Why is it useful?
Relationship to the ensemble Kalman filter

FPF = EnKF in two limits:
Linear Gaussian where gain function = Kalman gain

Approximation of the gain function by its average (constant) value

K(z)

Taghvaei, de Wiljes, M., and Reich, Kalman Filter and its Modern Extensions for the Continuous-time Nonlinear Filtering Problem, ASME J. of Dynamic
Systems, Measurement, and Control (2018).
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Why is it useful?
Relationship to the ensemble Kalman filter

FPF = EnKF in two limits:
Linear Gaussian where gain function = Kalman gain

Approximation of the gain function by its average (constant) value

K(z)

Question: Can we improve this approximation? |

Taghvaei, de Wiljes, M., and Reich, Kalman Filter and its Modern Extensions for the Continuous-time Nonlinear Filtering Problem, ASME J. of Dynamic
Systems, Measurement, and Control (2018).
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Non-Gaussian case
Galerkin approximation

Gain is a solution of an optimization problem:

min [ (V9100 + (hx) = 1) () p L) d

¢ € Hj(p,R?)
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Non-Gaussian case
Galerkin approximation

Gain is a solution of an optimization problem:

min [ (1V0P()+ () ~h)g()) plx) dv

PeS ~—~—
post.
¢ € Hy(p,RY)
— Exact
10)
K(z)
A (space of const. fns) !
EK] = [(h(x) — h)p(x)dx = 5 i
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Non-Gaussian case
Galerkin approximation

Gain is a solution of an optimization problem:

min [ (V9100 + (hx) = 1) () p L) d

¢ € Hj(p,R?)

S = span{...} K(z)
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Non-Gaussian case
Galerkin approximation

Gain is a solution of an optimization problem:

min [ (19900 + (hx) =1 () p L) d

¢ € H(p,R)

K(z)]

Moral of the story: basis function selection is non-trivial!
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What are we looking for?
Ensemble Kalman filter +
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What are we looking for?
Ensemble Kalman filter +

| Question: Can we improve this approximation? |
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Outline

Kalman filter

Kt = EtH

Ensemble Kalman filter

A

h(X)) — M) x!

2\
Mz

Feedback particle filter

i
K =7
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Gain function Approximation
Key idea is to use diffusion maps

(1) Poisson equation: —eAp =e(h—h)

R. Coifman, S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 2006,
M. Hein, et. al., Convergence of graph Laplacians on random neighborhood graphs, JLMR, 2007
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Gain function Approximation
Key idea is to use diffusion maps

~

(1) Poisson equation: —eApp =€(h—h)
(2) Semigroup formulation: (I—e)p = e(h—h)ds
(3) Fixed-point problem: e = Teoe +€(h—he)

R. Coifman, S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 2006,
M. Hein, et. al., Convergence of graph Laplacians on random neighborhood graphs, JLMR, 2007
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Gain function Approximation
Key idea is to use diffusion maps

(1) Poisson equation: —eAp ¢ =€e(h—h)
(2) Semigroup formulation: (I—e2)p = e(h—h)ds
(3) Fixed-point problem: Oe = Teoe +€(h—he)
(4) Empirical approximation q)s(N) = TgN) q)s(N) +e(h—i)
= TgN) is a N x N Markov matrix, * .
- ) X
T _ kY (xi x0) Xt .
S0 o x) K (¢, x09)

= k,(,:N)(x,y) is the diffusion map kernel

R. Coifman, S. Lafon, Diffusion maps, Applied and computational harmonic analysis, 2006,
M. Hein, et. al., Convergence of graph Laplacians on random neighborhood graphs, JLMR, 2007
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So how well it works?

No basis function selection!

,
— exact
6 o £=1071
5
K ¢
3
: const. gain
1
0
-2 01 0 1 2
X

Taghvaei and M., Gain Function Approximation for the Feedback Particle Filter, IEEE Conference on Decision and Control, (2016).
Taghvaei, M., and Meyn, Error Estimates for the Kernel Gain Function Approximation in the Feedback Particle Filter, American Control Conference, (2017).
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So how well it works?

No basis function selection!

Simple formula?

Kl = Z Sinj
j=1

?Reminiscent of the ensemble transform (Reich, A non-
parametric ensemble transform method for Bayesian in-
ference, SIAM J. Sci. Comput., (2013))

Taghvaei and M., Gain Function Approximation for the Feedback Particle Filter, IEEE Conference on Decision and Control, (2016).
Taghvaei, M., and Meyn, Error Estimates for the Kernel Gain Function Approximation in the Feedback Particle Filter, American Control Conference, (2017).
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So how well it works?

No basis function selection!

Simple formula

— exact
6 o e=10" R .
5 Kl ES Z Sinj
K 2 j:1
3

Reduces to the constant gain in the
limit as € — oo

const. gain

=

5 -1 )o( 1 2 Ki— %
J

(h(x) — N xI

Il
L,

Taghvaei and M., Gain Function Approximation for the Feedback Particle Filter, IEEE Conference on Decision and Control, (2016).
Taghvaei, M., and Meyn, Error Estimates for the Kernel Gain Function Approximation in the Feedback Particle Filter, American Control Conference, (2017).
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Ma B0

. N
Convergence analysns: (Pé ) e
variance bias

. 1
Error estimates: r.m.s.e=0(g)+ O(W)
bias ~
variance

' —e— diffusion ma
— exact i utl ! .p
¢ o £=102 ---- constant gain
P L Wl N B
L 100
o
K ¢ B
3
variance bias
2 . H N
const. gain dominates dominates
e A
___// ¥ 0t i
0 107 102 10! 100 Tot
-2 1 0 1 2

(Bias-variance tradeoff)
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Convergence analysns: (l)g( ) e
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Error analysis
Numerical experiments
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Summary slide
Ensemble Kalman filter and FPF

h(X})+N~" g h(X])

X} = a(X)dr+ 0 (X) dB{ +K, (X)) o (47 — - an X~ po
—_—————
simulation T
K(z)
ENKF: KX = L 3" (h) — ™))
- KX = - Y () ]
j=1
5 N .
FPF: Ki(X]) =Y s;iX]
Jj=1
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Interacting particle systems for estimation, learning and optimal
control

i sensory data
control input

reward

A

Minimize estimate
<
Bellman error [

TD-learning

coupled oscillator FPF

[Click to play the movie]

T. Wang, A. Taghvaei, P. Mehta, Q-learning for POMDP: An application to learning locomotion gaits, CDC (2019)
A. Taghvaei, S. Hutchinson and P. G. Mehta. A coupled-oscillators-based control architecture for locomotory gaits. CDC (2014).
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