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Transmission System Operation 

Higher and frequently Increased uncertainty changing power flows 
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Transmission System Operation 

Transmission 
System 
Operator 

Higher and frequently Increased uncertainty changing power flows 
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Impact of uncertainty? 

Non-Linear 
Network 

How to maintain grid security? 

Chance-constrained, robust, Adapt to uncertainty 
stochastic optimization in real time! 
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The Optimal Power Flow Problem 
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Optimal Power Flow 

Goal: Low cost operation, while enforcing technical limits 

)min ∑%∈' (),%+,,% + (.,% +,,% 

s.t. 
2 3, 4, +, 5 = 0, 

+,,8 9<=, > ∈ ' 9%: ≤ +,,8 ≤ +,,8
5,,8 9<=, > ∈ ' 9%: ≤ 5,,8 ≤ 5,,8

9%: ≤ 4% ≤ 4%9<=4% , ? ∈ ℬ 

AB,C (3, 4, +, 5) ≤ AB,C9<=, F ∈ ℒ 

Minimize generation cost 

HI 

HJ HLNon-Linear AC Power Flow 

Generation 
constraints 

HJ
HIVoltage 

constraints 
HK 

Transmission 
constraints 

HJ 

HK 
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Optimal Power Flow 

Goal: Low cost operation, while enforcing technical limits 

)min ∑%∈' (),%+,,% + (.,% +,,% 

s.t. 
2 3, 4, +, 5 = 0, 

+,,8 9<=, > ∈ ' 9%: ≤ +,,8 ≤ +,,8
5,,8 9<=, > ∈ ' 9%: ≤ 5,,8 ≤ 5,,8

9%: ≤ 4% ≤ 4%9<=4% , ? ∈ ℬ 

9<=AB,C (3, 4, +, 5) ≤ AB,C , F ∈ ℒ 

Minimize generation cost 

Non-Linear AC Power Flow 

Generation 
constraints 

Voltage 
constraints 

Transmission 
constraints 

Observation 1: 

Typically only very few 
transmission constraints 
are active at optimum! 

Can be exploited 

algorithmically! 

E.g. constraint generation 
[Bienstock, Harnett and Chertkov, 

SIAM Review, 2013] 

… 

4/16/19 | 8 



  

  

 

  

   

  

    

Optimal Power Flow 

Impact of renewable energy variations/load uncertainty & ? 

min ∑+∈- ./,+12,+ & / + .4,+ 12,+(&) 

s.t. 
: ;(&), <(&), 1(&), =(&) = 0, 

12,@ ADE, F ∈ -A+B ≤ 12,@(&) ≤ 12,@
=2,@ ADE, F ∈ -A+B ≤ =2,@(&) ≤ =2,@

ADE<+A+B ≤ <+(&) ≤ <+ , G ∈ ℬ 

ADEGI,J (&) ≤ GI,J , K ∈ ℒ 

Minimize generation cost 

!" 

!# !%Non-Linear AC Power Flow 

Generation 
constraints 

!" Voltage 
constraints 

!$ 

Transmission 
constraints 

!# 

!# 
!$ 
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Optimal Power Flow 

Impact of renewable energy variations/load uncertainty ! ? 

min ∑&∈( )*,&,-,& ! * + )/,& ,-,&(!) 

s.t. 
5 6(!), 7(!), ,(!), 8(!) = 0, 

,-,; <?@, A ∈ ( <&= ≤ ,-,;(!) ≤ ,-,;
8-,; <?@, A ∈ ( <&= ≤ 8-,;(!) ≤ 8-,;

7&<&= ≤ 7&(!) ≤ 7&<?@, B ∈ ℬ 

<?@,BD,E (!) ≤ BD,E F ∈ ℒ 

Minimize generation cost 

Non-Linear AC Power Flow 

Generation 
constraints 

Voltage 
constraints 

Transmission 
constraints 

Observation 2: 
Typically only very few 
transmission constraints 
are ever active even for 
different parameters ! ! 

The topic of this talk! 
Is this observation true?? 
How can we use it?? 
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1. Learning solutions to (power system) optimization 
problems through optimal active sets 

2. Identifying potentially active constraints 
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Learning solutions to (power system) 
optimization problems 

Yee Sian Ng Sidhant Misra 
(MIT) (LANL) 

Yee Sian Ng, Sidhant Misra, Line Roald and Scott Backhaus, «Statistical Learning for DC 
Optimal Power Flow», Power System Computation Conference (PSCC), 2018 

Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», 
submitted, available online: https://arxiv.org/abs/1802.09639 
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Optimal Power Flow 

Impact of renewable energy variations/load uncertainty & ? 

min ∑+∈- ./,+12,+ & / + .4,+ 12,+(&) 

s.t. 
: ;(&), <(&), 1(&), =(&) = 0, 

12,@ ADE, F ∈ -A+B ≤ 12,@(&) ≤ 12,@
=2,@ ADE, F ∈ -A+B ≤ =2,@(&) ≤ =2,@

ADE<+A+B ≤ <+(&) ≤ <+ , G ∈ ℬ 

ADEGI,J (&) ≤ GI,J , K ∈ ℒ 

Minimize generation cost 

!" 

!# !%Non-Linear AC Power Flow 

Generation 
constraints 

!" Voltage 
constraints 

!$ 

Transmission 
constraints 

!# 

!# 
!$ 
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Optimal Power Flow 

∗Resolve problem every 5-15 min! For each 2, obtain 01 2 

min ∑*∈, -.,*01,* 2 . + -4,* 01,*(2) 

s.t. 
: ;(2), <(2), 0(2), =(2) = 0, 

01,@ ADE, F ∈ , A*B ≤ 01,@(2) ≤ 01,@
=1,@ ADE, F ∈ , A*B ≤ =1,@(2) ≤ =1,@

ADE<*A*B ≤ <*(2) ≤ <* , G ∈ ℬ 

ADEGI,J (2) ≤ GI,J , K ∈ ℒ 

Minimize generation cost 

!" 

!# !%Non-Linear AC Power Flow 

Generation 
constraints 

!" Voltage 
constraints 

!$ 

Transmission 
constraints 

!# 

!# 
!$ 
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Repeated solution process 

OPF at !": #" → %&∗ (#") OPF at !*: #* → %&∗ (#*) OPF at !+: #+ → %&∗ (#+) 

… 

Can we use learning to speed up the solution process 
by using information from past solutions ,-, /0 

∗ ,- ? 
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Learning for optimization 

Renewable Prediction 
method 

Optimal 
energy dispatch

∗$ !" $% 

Can we use learning to speed up the solution process 
by using information from past solutions $%, !" 

∗ $% ? 
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First attempt: 

Train a neural net 
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First Attempt – Train a Neural Net 

Renewable Dispatch
energy "# !$! 
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First Attempt – Train a Neural Net 

Renewable Dispatch
energy "# !$! 

• This didn’t work well... 

(DISCLAIMER: I will admit that we gave up quite fast!) 
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First Attempt – Train a Neural Net 

Renewable Dispatch
energy "# !$! 

• This didn’t work well... 
– Hard to satisfy safety constraints! 

In-depth literature review: Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», 
submitted, available online: https://arxiv.org/abs/1802.09639 
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First Attempt – Train a Neural Net 

Renewable Dispatch
energy "# !$! 

• This didn’t work well... 
– Hard to satisfy safety constraints! 

– Projection back onto feasible space cause suboptimality… 

In-depth literature review: Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», 
submitted, available online: https://arxiv.org/abs/1802.09639 
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First Attempt – Train a Neural Net 

Renewable Dispatch
energy #$ "%" 

• This didn’t work well... 
– Hard to satisfy safety constraints! 
– Projection back onto feasible space cause suboptimality… 
– Challenging: High-dimensional input → High dimensional output 

In-depth literature review: Sidhant Misra, Line Roald and Yee Sian Ng, «Learning for Constrained Optimization», 
submitted, available online: https://arxiv.org/abs/1802.09639 
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First Attempt – Train a Neural Net 

Renewable Dispatch
energy #$ "%" 

• This didn’t work well... 
– Hard to satisfy safety constraints! 
– Projection back onto feasible space cause suboptimality… 
– Challenging: High-dimensional input → High dimensional output 

• This can work well under some circumstances Wide enough and deep enough, and 
with enough data! [Karg and Lucia, 2018] 
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First Attempt – Train a Neural Net 

Renewable Dispatch
energy !" #$# 

We have a mathematical optimization problem 

– can we use more information about the problem structure? 
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Think again: 

How can we leverage pre-existing knowledge 

about the solution? 
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Think again: 

How can we leverage pre-existing knowledge 

about the solution? 

New idea: 
Learn the optimal set of active constraints! 
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Optimal set of active constraints 

Set of constraints that are active at optimum! 

• Equality (power flow) constraints are always active 

• Only very few of the inequality constraints are active 
– Generation constraints 
– Voltage constraints 
– Transmission constraints 
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Learn optimal set of active constraints 

Renewable Predict optimal 
active set 

Predict/recover 
optimal solution 

Optimal 
active set 
&∗ $% 

Optimal 

$
energy dispatch

∗!" $% 

• Why? 
– Optimal active set is the “minimal” information we need to recover optimal solution 

– Inherently encodes information about physical constraints and technical limits 

– Finite, low dimensional object 

– Nice physical interpretation (power system operational pattern) 
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Learn optimal set of active constraints 

Renewable Predict optimal 
active set 

Predict/recover 
optimal solution 

Optimal 
active set 
&∗ $% 

Optimal 

$
energy dispatch

∗!" $% 

• Related to explicit MPC 
– Explicit MPC – each optimal active set corresponds to an optimal affine control policy 
[Bemporad et al, 2002], [Pannochia, Rawlings, Wright, 2007], [Zeilinger et al, 2011], [Karg and Lucia, 2018], … 

Look only at specific classes of problems 
Not very scalable 
Do not consider input distribution over ' 
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Ensemble Policy 

" # " $ " %... 

&'(!) &*(!) &+(!)... 

... 

Realization ! 

Candidates for 
optimal active set 

Solve problem given the active set 

→ Solve a reduced problem with fewer constraints! 

→ Solve a set of linear equations (linear problem)! 

Easier than solving the full optimal power 
flow problem 

4/16/19 | 30 



 

  

 

 
  

   
  

      

Ensemble Policy 

Realization ! 

Candidates for 
optimal active set 

Solve problem given the optimal active set 

Feasible ... Feasible Evaluate cost and feasibility Infeasible 
Low cost High cost 

" # " $ " %... 

&'(!) &*(!) &+(!)... 

... 

4/16/19 | 31 



 

  

 

 
  

   
  

      

Ensemble Policy 

Realization ! 

" # " $ " %... 

&'(!) &*(!) &+(!) 

Infeasible Feasible 
Low cost 

Feasible 
High cost 

... 

... 

... 

Candidates for 
optimal active set 

Solve problem given the optimal active set 

Evaluate cost and feasibility 

Pick best (optimal?) solution 
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Limits of the Approach 

Realization ! 
Works well if the number of 

active sets *+ is small! 

Total number of possible 

active sets is exponential •

Maybe only a few are 

practically relevant? •

" # " $ " %... 

&'(!) 

Feasible 
Low cost 

... 
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Limits of the Approach 

Realization ! 

" # " $ " %... 

&'(!) 

Feasible 
Low cost 

... 

How to identify the collection of 

relevant active sets? 

High probability that one of 
the active sets is optimal for a 

new realization ! 

Do NOT search entire parameter space! 
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Using Sampling to Learn Important Active Sets 

4/16/19 | 35 



  

 

Learning Collection of Optimal Active Sets 

… 
$%&# $#!# 

$% $%&+ 

$" 

$%&" …
$+ … 

$%&'() * …!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

… 
$%&# $#!# 

$% $%&+ 

$" 

$%&" …
$+ … 

$%&'() * …!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

… 
$%&# $#!# 

$% $%&+ 

$" 

$%&" …
$+ … 

$%&'() * …!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

… 
$%&# $#!# 

Collection of $% $%&+ 
observed active sets 

$" 

$%&" … -. =$+ … 

$%&'() * 

$" 

…!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

… 
$%&# $#!# 

Collection of $% $%&+ 
observed active sets 

$" 

$%&" … -. =$+ … 

$%&'() * 

$" 

…!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

… 
$%&#$$##!# 

Collection of$% $%&+ 
observed active sets

$" 

$%&" … -. =$+ … 

$%&'() * 

$" , $# 

…!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

… 

!" 

$%&#$$##!# 
Collection of$% $%&+ 

observed active sets
$" 

$%&" … -. =$+ … 

$%&'() * 

$" , $# 

… 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

!# $$## 

$" 

… 
$%&# 

Collection of$% $%&+ 
observed active sets 

$%&" … -. =$+ … 

$%&'() * 

$" , $# 

…!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

!# $$## 

$" 

… 
$%&# 

Collection of$% $%&+ 
observed active sets 

$%&" … -. =$$++ … 

$%&'() * 

$" , $# , $% 

…!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 
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Learning Collection of Optimal Active Sets 

… 
$%&# !# $# 

Collection of $% $%&+ 
observed active sets 

$%&" … -. =$+ … 

$%&'() * 

$" , $#, … , $% 

…!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 

$" …
 
…

…
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Learning Collection of Optimal Active Sets 

$" …
…

 

… 
$%&# !# 

…

$# 

Collection of $% $%&+ 
observed active sets 

$%&" … -. =$+ … 

$%&'() * 

$" , $#, … , $% 

…!" 

samples of input parameters all possible active sets 
color: discovered active sets 
grey: undiscovered active sets 

When do I stop??? 
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Streaming Algorithm to Learn 

Collection of Optimal Active Sets 
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Learning Collection of Optimal Active Sets 

Optimal Training data: ∗ solution Optimization #" Renewable energy realizations and Input !" problem %&
∗ Optimal∗ corresponding active set '&, %& active set 

Goal: Find a active sets that together have a high probability of being optimal! 
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Learning Collection of Optimal Active Sets 

1. Observe optimal active sets for M samples 

! !∗$∗" !∗%… 

Collection of observed active sets 
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Learning Collection of Optimal Active Sets 

1. Observe optimal active sets for M samples 

∗ ∗ … ∗!" !$ !% 

Collection of observed active sets 

2. Check “rate of discovery” for W samples 

∗ ∗ ∗!" !$ … !' 

How frequently do we observe sets 
we have not seen before? 

ABCDEFGHIGJRate of discovery: @%,' = A 

where ( = 
*+ max{log 5 , log 5 },-

+ >?= 5 = 1 + 
= 

: +;< 

4/16/19 | 50 



     
   

  

      

   

      

    
   

  

  

Learning Collection of Optimal Active Sets 

1. Observe optimal active sets for M samples 2. Check “rate of discovery” for W samples 

∗ ∗ … ∗ ∗ ∗ … ∗)/),))-),) **

Collection of observed active sets How frequently do we observe sets 
we have not seen before? 

G-,/ = 
HIJKLMNOPNQRate of discovery: 

H 

• If the rate of discovery is below 
the threshold !",$ ≤ & − (, stop. 

where 0 = 
23 max{log = , log = }

3 EFD= = 1

45

+ 
A 3BC 

D

performance 
guarantee 
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Learning Collection of Optimal Active Sets 

1. Observe optimal active sets for M samples 2. Check “rate of discovery” for W samples 

∗ ∗ ∗ ∗∗ ∗ … ∗ ∗ )* )* … )/)* ), )- )/0* )-0* 

Collection of observed active sets How frequently do we observe sets 
we have not seen before? 

• If the rate of discovery is below Guarantees performance 
the threshold !",$ ≤ & − (, stop. at termination 

[Misra, Roald, Ng, 2018] 
• If the rate of discovery is too high, add more samples. 
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Learning Collection of Optimal Active Sets 

1. Observe optimal active sets for M samples 2. Check “rate of discovery” for W samples 

∗ ∗ ∗ ∗∗ ∗ … ∗ ∗ )* )* … )/)* ), )- )/0* )-0* 

Collection of observed active sets How frequently do we observe sets 
we have not seen before? 

• If the rate of discovery is below Guarantees performance 
the threshold !",$ ≤ & − (, stop. at termination 

[Misra, Roald, Ng, 2018] 
• If the rate of discovery is too high, add more samples. 

Guaranteed to converge! 
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Learning Collection of Optimal Active Sets 

1. Observe optimal active sets for M samples 2. Check “rate of discovery” for W samples 

∗ ∗ ∗ ∗∗ ∗ … ∗ ∗ )* )* … )/)* ), )- )/0* )-0* 

Collection of observed active sets How frequently do we observe sets 
we have not seen before? 

• If the rate of discovery is below Guarantees performance 
the threshold !",$ ≤ & − (, stop. at termination 

[Misra, Roald, Ng, 2018] 
• If the rate of discovery is too high, add more samples. 

[Misra, Roald, Guaranteed to converge fast for low number of optimal active sets! Ng, 2018] 
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Practicability of the approach 

Realization ! 

" # " $ " %... 

&'(!) 

Feasible 
Low cost 

... Simultaneously establishes 

- Collection of optimal active sets 

- Practicability of the approach 

No assumptions on distribution 

No assumptions on problem structure 

Guaranteed to converge fast for low number of optimal active sets! 
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Results for the (linear) 

DC Optimal Power Flow Problem 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Probabilistic guarantee: ℙ" # $% < ' = 0.05, 
Termination: 2%,4 ≤ 0.01 

Max. difference: , = 0.04 

Confidence level: . = 0.01 

Hyperparameter: 0 = 2 

H Initial W: 6 = 13L259 
8 IJH 6 = 

78 max{log B , log B} with B = 1 + 
9: E 8FG (constant until B = 201) 

4/16/19 | 57 

http:PGLib-OPFv17.08


     

  

  

 

 

   

    
 

Streaming Algorithm Results – PGLib-OPF v 17.08 

Probabilistic guarantee: ℙ" # $% < ' = 0.05, 
Termination: 2%,4 ≤ 0.01 

Max. difference: , = 0.04 

Confidence level: . = 0.01 

Hyperparameter: 0 = 2 

H Initial W: 6 = 13L259 
8 IJH 6 = 

78 max{log B , log B} with B = 1 + 
9: E 8FG (constant until B = 201) 

Uniform distribution Normal distribution Uncertain loads: with supportN ~P 0, Q = 0.03R N ∈ [−0.09R, 0.09R] 
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Example – RTE 1951 bus test case 

Number of active sets 
5 

Rate of discovery 
0.0069 

0 10 20 30 40 M=47 
W=13’259 

When there are few relevant active sets, the algorithm terminates fast! 
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Example – PSERC 200 bus test case 

0.6 

Number of active sets 0.5 5 
0.4 

0.3 

Rate of discovery 0.2 

0.0069 0.1 

0.0 
0 10 20 30 40 M=47 

W=13’259 Probability of 
observed sets 

When there are few relevant active sets, the algorithm terminates fast! 
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Example – PSERC 200 bus test case 

0.12 
Number of active sets 

0.10 163 
0.08 

0.06 

Rate of discovery 0.04 

0.0099 0.02 

0.0 
0 500 1000 1500 2000 M=2602 

W=19’661 Probability of 
observed sets 

When there are many relevant active sets, the algorithm terminates slowly! 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

System sizes ranging 
from 3 to 1951 nodes 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

Normal distribution
. ~ 0 0, 1 = 0.033 

Uniform distribution 
with support

. ∈ [−0.093, 0.093] 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

Few active sets! 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

Few active sets! 

Terminates fast. 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

Few active sets! 

Terminates fast. 

High probability of 
optimal solutions! 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

Few active sets! 

Terminates fast. 

High probability of 
optimal solutions! 

Not always: 
Large number of 
active sets 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

Few active sets! 

Terminates fast. 

High probability of 
optimal solutions! 

Not always: 
Large number of 
active sets 
Slow to terminate. 
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Streaming Algorithm Results – PGLib-OPF v 17.08 

Max. undiscovered: ! = 0.05, Max. difference: & = 0.04 Termination: (),+ ≤ 0.01 

Few active sets! 

Terminates fast. 

High probability of 
optimal solutions! 

Not always: 
Large number of 
active sets 
Slow to terminate. 
Lower probability of 
optimal solutions! 
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Practical Implications for Power Systems Operation 
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IEEE 300 bus system with normally distributed load 

Std.dev. = 1% of load 
Std.dev. = 2% of load 
Std.dev. = 3% of load 
Std.dev. = 4% of load 
Std.dev. = 5% of load 

N
um
be
r o
f u
ni
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Increasing parameter uncertainty = 
Increasing number of optimal active sets 
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IEEE 300 bus system with normally distributed load 
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Increasing parameter uncertainty = 
Increasing number of optimal active sets 

«Power systems operation becomes more unpreditable and 
complex with increasing uncertainty» 

General perception among system operators 
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IEEE 300 bus system with normally distributed load 

Std.dev. = 1% of load 
Std.dev. = 2% of load 
Std.dev. = 3% of load 
Std.dev. = 4% of load 
Std.dev. = 5% of load 
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Increasing parameter uncertainty = 
Increasing number of optimal active sets 

«Power systems operation becomes more unpreditable and 
complex with increasing uncertainty» 

General perception among system operators 

What does this imply for system risk? Price stability? 
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Summary 

# 1 – Leverage pre-existing knowledge (mathematical model) improves learning outcomes 

# 2 – Using active sets as an intermediate step is useful 
- encodes all information about optimal solution 
- finite (and typically low?) number of active sets 

# 3 – Streaming algorithm establishes practicability of the task 
- Probabilistic performance guarantees 
- Guaranteed to terminate 
- Guaranteed to terminate fast for nice problems 

• Quite general strategy 
– Streaming algorithm can work for very general problems: Non-convex AC OPF, mixed integer problems … 
– Disclaimer: Application must be such that the number of active sets is small. 
– Alternative strategy: Learn possible active constraints instead of active sets 
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Outlook 

Realization ! 

" # " $ " %... 

&'(!) 

Feasible 
Low cost 

... Classification! 

[Deka and Misra, 2019] 
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Outlook 

Realization ! 

" # " $ " %... 

&'(!) 

Feasible 
Low cost 

... Classification! 

Efficient solution? 
Active set solver, local approximation, … 
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Preliminary results for the (non-linear, non-convex) 

AC Optimal Power Flow Problem 
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      Rate of discovery of new optimal active sets 

AC Optimal Power Flow 

Max. undiscovered: ! = 0.1, Max. difference: & = 0.05 Termination: (),+ ≤ 0.05 

RTE 1951 bus test case PSERC 200 bus test case 
Rate of discovery of new optimal active sets 

0.039 0.967 

(did not terminate) 
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AC Optimal Power Flow 

Max. undiscovered: ! = 0.1, Max. difference: & = 0.05 Termination: (),+ ≤ 0.05 

RTE 1951 bus test case PSERC 200 bus test case 

0.967 0.039 

Rate of discovery of new optimal active sets Rate of discovery of new optimal active sets 

(did not terminate)Rate of discovery of new active constraints 

0.0035 

Rate of discovery of new active constraints 

0.0001 
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          (did not terminate) Rate of discovery of new active constraints Rate of discovery of new active constraints 

AC Optimal Power Flow 

Max. undiscovered: ! = 0.1, Max. difference: & = 0.05 Termination: (),+ ≤ 0.05 

RTE 1951 bus test case PSERC 200 bus test case 

Only 164 of 5192 transmission line Only 28 of 490 transmission line 
constraints ever active constraints ever active 

0.0035 0.0001 
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1. Learning solutions to (power system) optimization 
problems through optimal active sets 

2. Identifying potentially active constraints 
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Identifying potentially active constraints 

Daniel K. Molzahn 

Georgia Tech 

Dan Molzahn and Line Roald, «Grid-Aware versus Grid-Agnostic Distribution System Control: A 
Method for Certifying Engineering Constraint Satisfaction», Hawaii International Conference on 
System Sciences (HICSS), 2019 

Line Roald and Dan Molzahn, «Implied Constraint Satisfaction in Power System Optimization: 
The Impacts of Load Variations», available online: https://arxiv.org/abs/1904.01757 
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Optimal Power Flow 

-.,*01,* 2 . + -4,* 01,*(2)min ∑*∈, $%(') 

s.t. 
8 9(2), :(2), 0(2), ;(2) = 0, 

01,> ?BC, D ∈ , ?*@ ≤ 01,>(2) ≤ 01,>
;1,> ?BC, D ∈ , ?*@ ≤ ;1,>(2) ≤ ;1,>

:*?*@ ≤ :*(2) ≤ :*?BC, E ∈ ℬ 

?BCEG,H (2) ≤ EG,H , I ∈ ℒ 

Before, we learned 
constraints that are 
likely to be active 

Now we want to 
understand which 
constraints can 
possibly be active! 

Feasible set in the 
direction of the 
cost function 

The full 
feasible set 
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Optimization-based constraint screening 

Main idea: 
Minimize/maximize the value of the constraints! 

min $% / max $% 

s.t. 
+ ,, $, ., / = 0, 

.2,3 478, 9 ∈ ; 4%5 ≤ .2,3 ≤ .2,3
/2,3 478, 9 ∈ ; 4%5 ≤ /2,3 ≤ /2,3

$%4%5 ≤ $% ≤ $%478, < ∈ ℬ 

>?,@ (,, $, ., /) ≤ >?,@478, C ∈ ℒ 

Minimize/maximize
voltage, currents … 

Non-Linear AC Power Flow 

Generation 
constraints 

Voltage 
constraints 

Transmission 
constraints 

If max $% ≤ $%478 

and min $% ≥ $%4%5 

Voltage will never 
go out of bounds! 
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Optimization-based constraint screening 

Main idea: 
Minimize/maximize the value of the constraints! 

min $% / max $% 

s.t. 
+ ,, $, ., / = 0, 

.2,3 478, 9 ∈ ; 4%5 ≤ .2,3 ≤ .2,3
/2,3 478, 9 ∈ ; 4%5 ≤ /2,3 ≤ /2,3

$%4%5 ≤ $% ≤ $%478, < ∈ ℬ 

>?,@ (,, $, ., /) ≤ >?,@478, C ∈ ℒ 

Minimize/maximize
voltage, currents … 

Non-Linear AC Power Flow 

Generation 
constraints 

Voltage 
constraints 

Transmission 
constraints 

• Connections to optimization-
based bound tightening 
[C. Coffrin, Hijazi, and Van Hentenryck, 2015] 

• Results for DC OPF 
[Ardakani and F. Bouffard, 2013, 2015] 
[Madani, Lavaei, and Baldick, 2017] 

• Our interest: 
- Large ranges of load 
- AC OPF (distribution grids) 



     

   

  

 

 

    

  

 

 

  

   

Distribution grids – AC Optimal Power Flow 

- Consider ranges of load variations (not controllable by the system operator) 
- Voltage constraints only on buses we monitor/control 

min $% / max $% 

s.t. 
+ ,, $, ., / = 0, 

367,3%4 ≤ .2,% ≤ .2,%.2,%
367,3%4 ≤ /2,% ≤ /2,%/2,%

$%3%4 ≤ $% ≤ $%367, 

Minimize/maximize
voltage 

Non-Linear AC Power Flow 

8 ∈ : Load 
8 ∈ : variations 

Voltage constraints 8 ∈ ; on nodes with 
measurements/control 

Valid bounds: 

Use convex relaxation. 

QC relaxation with 
bound tightening 
[Coffrin, Hijazi and Van Hentenryck, 2016 & 2017] 

Challenging: 

- non-standard objective 

(relaxation is weak) 

- low-voltage solutions 

- … 



    

  

   
  

    
   

Can we certify safe operations? 

IEEE 123 bus system – 
single-phase equivalent 
[Bolognani and Zampieri, 2016] 

Start out assuming only one 
node with controlled voltage 
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Can we certify safe operations? 

Substation 

50% load variability What to do about violations?? 

Increasing load variability, 
increasing voltage range! 1.0 0.85 0.90 0.95 

Add more controllable nodes, and tighten the voltage limits! 
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Can we certify safe operations? 

Substation 

Bus 32
0.905 ≤ & ≤ 1.095 

50% load variability 

0.85 0.90 0.95 1.0 

Added controllability and tighter voltage range on Bus 32 
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Can we certify safe operations? 

Substation 

Bus 11 
0.92 ≤ & ≤ 1.09 

50% load variability 

0.85 0.90 0.95 1.0 

Added controllability and tighter voltage range on Bus 11 
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Redundant constraints in DC optimal power flow 

How many constraints can ever be active in DC optimal power flow? 

min &'()' Minimize/maximize constraints 
$% 

./s.t. ∑+,- )'(+) − 34(5) = 0 Power balance Non-redundant 

:;< ,8 ≤ )' ≤ )' Generation constraints Non-redundant 

−)>:;< ≤ ? )' − 34 ≤ )>:;<, Transmission constraints Often redundant 

Allow power demand 34(5) to vary ± A % where 0 ≤ A ≤ 100 

Relax generator lower bounds to 8 



   

  

 

 

 
 

Results on PGLib-OPF test cases 

Percentage of 
line flow Remaining 

constraints non-redundant 
constraints 

± % Load variation 
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Results on standard test cases 
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Optimization-based constraint screening 

• Main idea: 
– Solve optimization problems that minimize/maximize the value of the constraints 
(If the problems are hard to solve, use relaxations to obtain valid lower/upper 
bounds!) 

– Identify constraints that cannot be violated -> redundant constraints 
– Identify constraints that can be violated -> potentially important constraints 

• Works really well for power flow optimization! 

• We can use this to 
(1) identify constraints that need to be monitored/controlled 
(2) reduce the number of considered constraints 
(3) … 

4/16/19 | 95 



 

  

THANK YOU! 

Line Roald, roald@wisc.edu 
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Summary of streaming algorithm results 

1. Guaranteed to terminate, no need to decide on the number of M samples apriori 
Definition of the window size W and termination criterion 

Theorem 1 and 2 [Misra, Roald, Ng, 2018]: ( difference between true and 
empirical probability of 

If the window size!(#) is defined as unobserved active sets 
8

' 9:8 5 confidence level ! = 
&' 

() max{log # , log #} with # = 1 + 
5 '67 

G hyperparameter > 1 
Then ℙ < = > − @>,A ≤ C ∀ # > 1 ≤ 1 − F 

2. Guaranteed to terminate fast for benign systems 

Theorem 3 [Misra, Roald and Ng] If a (small) number of relevant active sets HI that contains 
more than 1 − JI probability mass, then with probability at least 1 − F − FI the algorithm 
terminates in less iterations than 

1
# = HI log 2 + log 

1 

J − JI FI 
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