Optimal Steady-State Control

(with Application to Secondary Frequency Control of Power Systems)

John W. Simpson-Porco

NREL Workshop on Opt./ Control Golden, CO, USA

April 22, 2019

Collaborators

Liam S. P. Lawrence MASc 2019, Waterloo

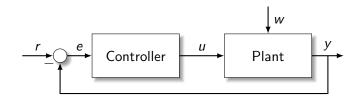
Enrique Mallada John's Hopkins Univ.

Talk based on:

• Lawrence, JWSP, Mallada: The optimal steady-state control problem (Arxiv preprint, revision pending . . .)

Control Systems 101

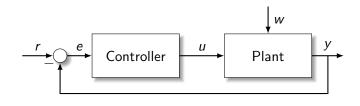
 Prototypical feedback control problem is tracking and disturbance rejection in the presence of model uncertainty



How is the reference *r* being determined?

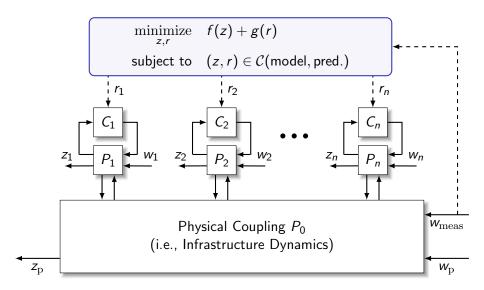
Control Systems 101

 Prototypical feedback control problem is tracking and disturbance rejection in the presence of model uncertainty

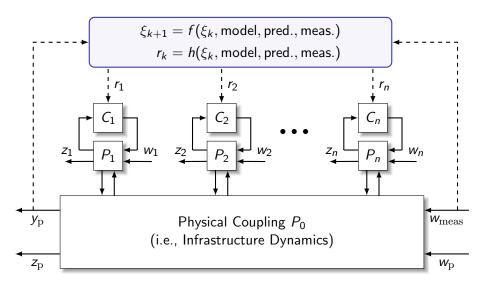


How is the reference *r* being determined?

Feedforward Optimization of Large-Scale Systems



Feedback Optimization of Large-Scale Systems



Given:

- a dynamic system model with
 - a class of external disturbances w(t)
 - a model uncertainty specification (e.g., parametric)
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- an optimization problem in y

- closed-loop is (robustly) well-posed and internally stable
- 2 the regulated output tracks its optimal value

$$\lim_{t \to \infty} y(t) - y^*(t) = 0, \qquad \forall \underline{\text{disturb}}, \ \forall \ \underline{\text{uncertainties}}$$

Given:

- a dynamic system model with
 - a class of external disturbances w(t)
 - a model uncertainty specification (e.g., parametric)
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- an optimization problem in y

- closed-loop is (robustly) well-posed and internally stable
- 2 the regulated output tracks its optimal value

$$\lim_{t \to \infty} y(t) - y^*(t) = 0, \qquad \forall \underline{\text{disturb}}, \ \forall \ \underline{\text{uncertainties}}$$

Given:

- a dynamic system model with
 - ullet a class of external disturbances w(t)
 - a model uncertainty specification (e.g., parametric)
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- an optimization problem in y

- closed-loop is (robustly) well-posed and internally stable
- 2 the regulated output tracks its optimal value

$$\lim_{t \to \infty} y(t) - y^*(t) = 0, \qquad \forall \underline{\text{disturb}}, \ \forall \ \underline{\text{uncertainties}}$$

Given:

- 1 a dynamic system model with
 - ullet a class of external disturbances w(t)
 - a model uncertainty specification (e.g., parametric)
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- \odot an optimization problem in y

- closed-loop is (robustly) well-posed and internally stable
- 2 the regulated output tracks its optimal value

$$\lim_{t \to \infty} y(t) - y^*(t) = 0, \qquad \forall \underline{\text{disturb}}, \ \forall \ \underline{\text{uncertainties}}$$

Given:

- 1 a dynamic system model with
 - ullet a class of external disturbances w(t)
 - a model uncertainty specification (e.g., parametric)
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- \odot an optimization problem in y

- closed-loop is (robustly) well-posed and internally stable
- 2 the regulated output tracks its optimal value

$$\lim_{t \to \infty} y(t) - y^*(t) = 0, \qquad \forall \underline{\text{disturb}}, \ \forall \ \underline{\text{uncertainties}}$$

Given:

- 1 a dynamic system model with
 - a class of external disturbances w(t)
 - a model uncertainty specification (e.g., parametric)
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- \odot an optimization problem in y

- closed-loop is (robustly) well-posed and internally stable
- 2 the regulated output tracks its optimal value

$$\lim_{t \to \infty} y(t) - y^*(t) = 0, \qquad \forall \underline{\text{disturb}}, \ \forall \ \underline{\text{uncertainties}}$$

Given:

- a dynamic system model with
 - a class of external disturbances w(t)
 - a model uncertainty specification (e.g., parametric)
- ② a vector of outputs $y \in \mathbb{R}^p$ of system to be optimized
- \odot an optimization problem in y

- closed-loop is (robustly) well-posed and internally stable
- 2 the regulated output tracks its optimal value

$$\lim_{t \to \infty} y(t) - y^{\star}(t) = 0, \qquad \forall \underline{\text{disturb}}, \ \forall \ \underline{\text{uncertainties}}$$

LTI-Convex OSS Control: Setup Overview

Uncertain (possibly unstable) LTI dynamics

$$\dot{x} = A(\delta)x + B(\delta)u + B_w(\delta)w$$

$$y_{\rm m} = C_{\rm m}(\delta)x + D_{\rm m}(\delta) + Q_{\rm m}(\delta)w$$

$$y = C(\delta)x + D(\delta)u + Q(\delta)w$$

- $\delta = \text{parametric uncertainty}$, w = const. disturbances
- $y_{\rm m} =$ system measurements available for **feedback**
- $y = \text{system states/inputs to be } \mathbf{optimized}$
- a steady-state convex optimization problem

$$y^*(w, \delta) = \underset{y \in \mathbb{R}^p}{\operatorname{argmin}} \{ f(y, w) : y \in \mathcal{C}(w, \delta) \}$$

LTI-Convex OSS Control: Setup Overview

Uncertain (possibly unstable) LTI dynamics

$$\dot{x} = A(\delta)x + B(\delta)u + B_w(\delta)w$$

$$y_{\rm m} = C_{\rm m}(\delta)x + D_{\rm m}(\delta) + Q_{\rm m}(\delta)w$$

$$y = C(\delta)x + D(\delta)u + Q(\delta)w$$

- $\delta = \text{parametric uncertainty}$, w = const. disturbances
- $y_{\rm m} =$ system measurements available for **feedback**
- *y* = system states/inputs to be **optimized**
- a steady-state convex optimization problem

$$y^*(w, \delta) = \underset{y \in \mathbb{R}^p}{\operatorname{argmin}} \{ f(y, w) : y \in \mathcal{C}(w, \delta) \}$$

Forced equilibria
$$(\bar{x}, \bar{u}, \bar{y})$$
 satisfy
$$\begin{array}{c} \mathbb{O} = A(\delta)\bar{x} + B(\delta)\bar{u} + B_w(\delta)w \\ \bar{y} = C(\delta)\bar{x} + D(\delta)\bar{u} + Q(\delta)w \end{array}$$

This defines an affine set of achievable steady-state outputs

$$\overline{Y}(w,\delta) = (\text{offset vector}) + V(\delta)$$

Note: Due to

- ① selection of variables $y \in \mathbb{R}^p$ to be optimized, and/or
- 2 structure of state-space matrices (A, B, C, D)

it may be that
$$\overline{Y}(w,\delta)\subset\mathbb{R}^p$$
 constraint $\bar{y}\in\overline{Y}(w,\delta)$ cannot be ignored!!

This defines an affine set of achievable steady-state outputs

$$\overline{Y}(w,\delta) = (\text{offset vector}) + V(\delta)$$

Note: Due to

- **1** selection of variables $y \in \mathbb{R}^p$ to be optimized, and/or
- 2 structure of state-space matrices (A, B, C, D)

it may be that
$$\overline{Y}(w,\delta)\subset\mathbb{R}^p$$
 constraint $\bar{y}\in\overline{Y}(w,\delta)$ cannot be ignored!!

Desired regulated output $y^*(w, \delta)$ solution to

$\mathop{\mathrm{minimize}}_{y \in \mathbb{R}^p}$	$f_0(y, w)$	(convex cost)
subject to	$y \in \overline{Y}(w, \delta)$	(equilibrium)
	Hy = Lw	(engineering equality)
	$Jy \leq Mw$	(engineering inequality)

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

```
\begin{array}{ll} \underset{y \in \mathbb{R}^p}{\text{minimize}} & f_0(y,w) & \text{(convex cost)} \\ \text{subject to} & y \in \overline{Y}(w,\delta) & \text{(equilibrium)} \\ & & Hy = Lw & \text{(engineering equality)} \\ & & Jy \leq Mw & \text{(engineering inequality)} \end{array}
```

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

$$\begin{array}{ll} \underset{y \in \mathbb{R}^p}{\text{minimize}} & f_0(y,w) & \text{(convex cost)} \\ \text{subject to} & y \in \overline{Y}(w,\delta) & \text{(equilibrium)} \\ & Hy = Lw & \text{(engineering equality)} \\ & Jy \leq Mw & \text{(engineering inequality)} \end{array}$$

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

```
\begin{array}{ll} \underset{y \in \mathbb{R}^p}{\text{minimize}} & f_0(y,w) & \text{(convex cost)} \\ \text{subject to} & y \in \overline{Y}(w,\delta) & \text{(equilibrium)} \\ & Hy = Lw & \text{(engineering equality)} \\ & Jy \leq Mw & \text{(engineering inequality)} \end{array}
```

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

Desired regulated output $y^*(w, \delta)$ solution to

```
\begin{array}{ll} \underset{y \in \mathbb{R}^p}{\text{minimize}} & f_0(y,w) & \text{(convex cost)} \\ \text{subject to} & y \in \overline{Y}(w,\delta) & \text{(equilibrium)} \\ & Hy = Lw & \text{(engineering equality)} \\ & Jy \leq Mw & \text{(engineering inequality)} \end{array}
```

Equilibrium constraints ensure **compatibility** between the plant and the optimization problem

 \implies guarantees a steady-state exists s.t. $y = y^*(w, \delta)$.

An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$

Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

Driving ϵ to zero (+ internal stability) drives y to y

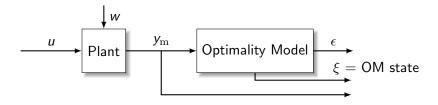
An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$



Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

Driving ϵ to zero (+ internal stability) drives y to y

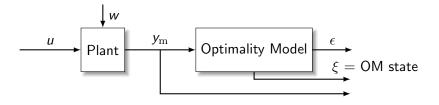
An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$



Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

Driving ϵ to zero (+ internal stability) drives y to y*

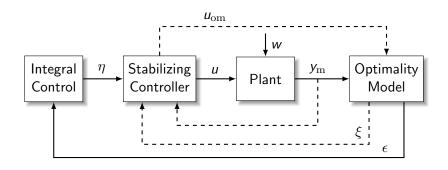
An **optimality model** filters the available measurements to robustly produce a proxy error ϵ for the true tracking error $e = y^*(w, \delta) - y$



Steady-state requirement: if the plant and optimality model are both in equilibrium and $\epsilon = 0$, then $y = y^*(w, \delta)$.

Driving ϵ to zero (+ internal stability) drives y to y*

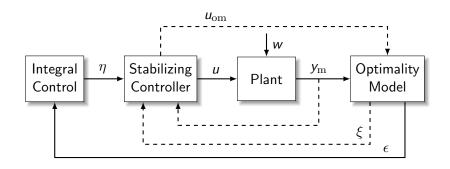
Optimality model reduces OSS control to output regulation



Optimality Model: creates proxy error signal $\boldsymbol{\epsilon}$

Integral Control: integrates ϵ

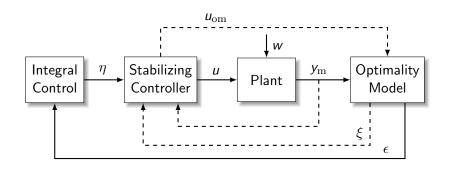
Optimality model reduces OSS control to output regulation



Optimality Model: creates proxy error signal ϵ

Integral Control: integrates ϵ

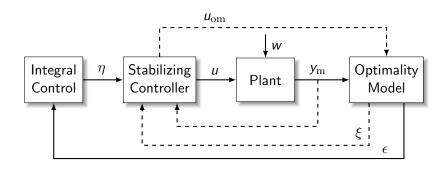
Optimality model reduces OSS control to output regulation



Optimality Model: creates proxy error signal ϵ

Integral Control: integrates ϵ

Optimality model reduces OSS control to output regulation



Optimality Model: creates proxy error signal ϵ

Integral Control: integrates ϵ

Optimality Model Details I

Can we implement an optimality model that is *robust* against δ ?

$$\begin{array}{ll} \underset{y \in \mathbb{R}^p}{\text{minimize}} & f_0(y,w) \\ \text{subject to} & y \in \overline{Y}(w,\delta) = (\text{offset}) + V(\delta) \\ & Hy = Lw \\ & Jy \leq Mw \end{array}$$

Optimality condition:

$$\nabla f_0(y^*, w) + J^{\mathsf{T}} \nu^* \perp (V(\delta) \cap \text{null}(H))$$

possibly depends on uncertain parameter δ

Optimality Model Details I

Can we implement an optimality model that is *robust* against δ ?

$$egin{array}{ll} & \min _{y \in \mathbb{R}^p} & f_0(y,w) \ & ext{subject to} & y \in \overline{Y}(w,\delta) = (ext{offset}) + V(\delta) \ & Hy = Lw \ & Jy \leq Mw \end{array}$$

Optimality condition:

$$\nabla f_0(y^*, w) + J^{\mathsf{T}} \nu^* \perp (V(\delta) \cap \text{null}(H))$$

possibly depends on uncertain parameter δ

Optimality Model Details I

Can we implement an optimality model that is *robust* against δ ?

$$egin{array}{ll} & \min _{y \in \mathbb{R}^p} & f_0(y,w) \ & ext{subject to} & y \in \overline{Y}(w,\delta) = (ext{offset}) + V(\delta) \ & Hy = Lw \ & Jy \leq Mw \end{array}$$

Optimality condition:

$$\nabla f_0(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (V(\delta) \cap \text{null}(H))$$

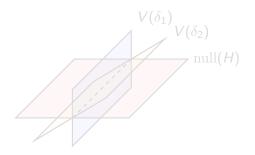
possibly depends on uncertain parameter δ .

Optimality Model Details II

When can an optimality model encode the gradient KKT condition?

$$\nabla f_0(y^*, w) + J^{\mathsf{T}} \nu^* \perp (V(\delta) \cap \text{null}(H))$$

Robust Feasible Subspace Property $V(\delta) \cap \text{null}(H)$ is independent of δ



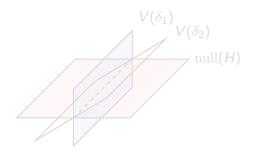
Optimality Model Details II

When can an optimality model encode the gradient KKT condition?

$$\nabla f_0(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (V(\delta) \cap \text{null}(H))$$

Robust Feasible Subspace Property

 $V(\delta) \cap \operatorname{null}(H)$ is independent of δ



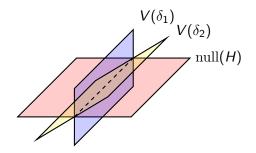
Optimality Model Details II

When can an optimality model encode the gradient KKT condition?

$$\nabla f_0(y^{\star}, w) + J^{\mathsf{T}} \nu^{\star} \perp (V(\delta) \cap \text{null}(H))$$

Robust Feasible Subspace Property

 $V(\delta) \cap \text{null}(H)$ is independent of δ



Optimality Model Details III

If Robust Feasible Subspace property holds, then

$$\dot{\nu} = \varphi(\nu, Jy - Mw)$$

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} (\nabla f_0(y, w) + J^{\mathsf{T}} \nu) \end{bmatrix}$$

$$range(T_0)$$

$$= V(\delta) \cap null(H)$$
(Design treedom!)

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

① $T_0^T z$ extracts component of z in subspace $V(\delta) \cap \text{null}(H)$:

$$\epsilon_2 = 0 \iff \nabla f_0(y, w) + J^{\mathsf{T}} \nu \perp V(\delta) \cap \text{null}(H)$$

② Flexibility: different equivalent formulations of optimization problem yield different optimality models

Optimality Model Details III

If Robust Feasible Subspace property holds, then

$$\dot{\nu} = \varphi(\nu, Jy - Mw)$$

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} (\nabla f_0(y, w) + J^{\mathsf{T}} \nu) \end{bmatrix}$$

range
$$(T_0)$$
= $V(\delta) \cap \text{null}(H)$
(Design freedom!)

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

1 $T_0^T z$ extracts component of z in subspace $V(\delta) \cap \text{null}(H)$:

$$\epsilon_2 = \mathbb{O} \qquad \Longleftrightarrow \qquad \nabla f_0(y, w) + J^{\mathsf{T}} \nu \perp V(\delta) \cap \text{null}(H)$$

Flexibility: different equivalent formulations of optimization problem yield different optimality models

Optimality Model Details III

If Robust Feasible Subspace property holds, then

$$\dot{\nu} = \varphi(\nu, Jy - Mw)$$

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^{\mathsf{T}} (\nabla f_0(y, w) + J^{\mathsf{T}} \nu) \end{bmatrix}$$

range
$$(T_0)$$

= $V(\delta) \cap \text{null}(H)$
(Design freedom!)

is an optimality model for the LTI-Convex OSS Control Problem.

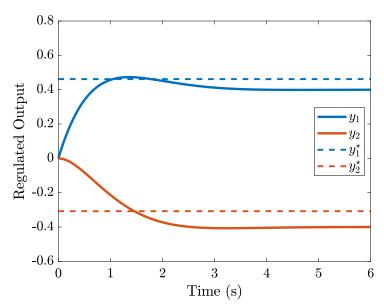
Comments:

• $T_0^T z$ extracts component of z in subspace $V(\delta) \cap \text{null}(H)$:

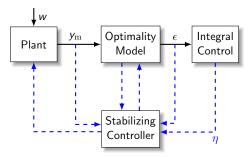
$$\epsilon_2 = 0 \iff \nabla f_0(y, w) + J^{\mathsf{T}} \nu \perp V(\delta) \cap \text{null}(H)$$

Plexibility: different equivalent formulations of optimization problem yield different optimality models

What happens if RFS does not hold?

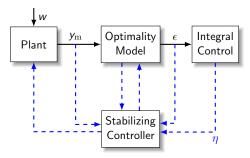


Can we actually stabilize this thing?



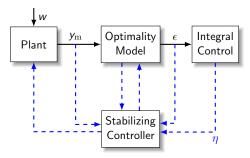
- 2 Can prove closed-loop stable \Longrightarrow OSS control problem solved
- For QP OSS control, can prove cascade is stabilizable iff
 - plant stabilizable/detectable
 - optimization problem has a unique solution
 - engineering constraints not redundant with equilibrium constraints
 - T₀ has full column rank

Can we actually stabilize this thing?



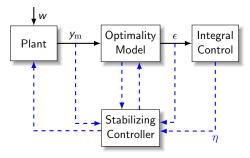
- $oldsymbol{2}$ Can prove closed-loop stable \Longrightarrow OSS control problem solved
- For QP OSS control, can prove cascade is stabilizable ifl
 - plant stabilizable/detectable
 - optimization problem has a unique solution
 - engineering constraints not redundant with equilibrium constraints
 - T₀ has full column rank

Can we actually stabilize this thing?



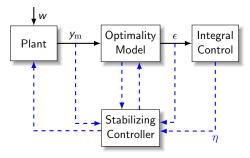
- 2 Can prove closed-loop stable \Longrightarrow OSS control problem solved
- For QP OSS control, can prove cascade is stabilizable iff
 - plant stabilizable/detectable
 - optimization problem has a unique solution
 - engineering constraints not redundant with equilibrium constraints
 - T₀ has full column rank

Can we actually stabilize this thing?



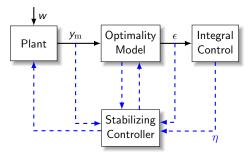
- 2 Can prove closed-loop stable \Longrightarrow OSS control problem solved
- For QP OSS control, can prove cascade is stabilizable iff
 - plant stabilizable/detectable
 - optimization problem has a unique solution
 - engineering constraints not redundant with equilibrium constraints
 - T₀ has full column rank

Can we actually stabilize this thing?



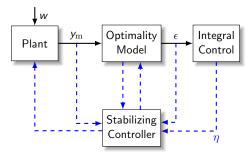
- 2 Can prove closed-loop stable \Longrightarrow OSS control problem solved
- For QP OSS control, can prove cascade is stabilizable iff
 - plant stabilizable/detectable
 - optimization problem has a unique solution
 - engineering constraints not redundant with equilibrium constraints
 - T_0 has full column rank

Can we actually stabilize this thing?



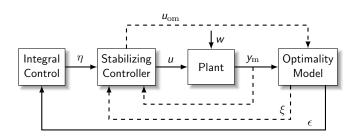
- 2 Can prove closed-loop stable \Longrightarrow OSS control problem solved
- For QP OSS control, can prove cascade is stabilizable iff
 - plant stabilizable/detectable
 - optimization problem has a unique solution
 - engineering constraints not redundant with equilibrium constraints
 - T₀ has full column rank

Can we actually stabilize this thing?



- ullet Can prove closed-loop stable \Longrightarrow OSS control problem solved
- For QP OSS control, can prove cascade is stabilizable iff
 - plant stabilizable/detectable
 - optimization problem has a unique solution
 - engineering constraints not redundant with equilibrium constraints
 - T₀ has full column rank

Optimality model contains monotone nonlinearity $\nabla f_0(y)$...



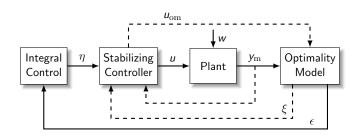
Stabilizer design options:

- 1 In theory: full-order robustly stabilizing controller design
- ② In practice: low-gain integral control $u=-K\eta$ if open-loop stable, or any heuristic, e.g., linearize and do \mathcal{H}_2 design

Closed-loop stability analysis:

Robust stability (e.g., IQC-based) or time-scale separation

Optimality model contains monotone nonlinearity $\nabla f_0(y)$...



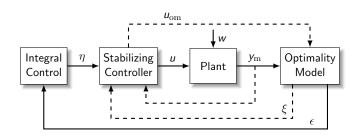
Stabilizer design options:

- 1 In theory: full-order robustly stabilizing controller design
- ② In practice: low-gain integral control $u = -K\eta$ if open-loop stable, or any heuristic, e.g., linearize and do \mathcal{H}_2 design

Closed-loop stability analysis:

Robust stability (e.g., IQC-based) or time-scale separation

Optimality model contains monotone nonlinearity $\nabla f_0(y)$...



Stabilizer design options:

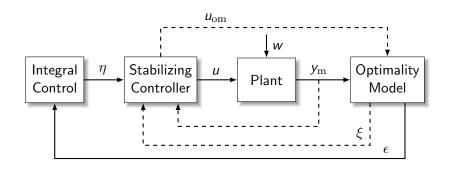
- 1 In theory: full-order robustly stabilizing controller design
- ② In practice: low-gain integral control $u = -K\eta$ if open-loop stable, or any heuristic, e.g., linearize and do \mathcal{H}_2 design

Closed-loop stability analysis:

Robust stability (e.g., IQC-based) or time-scale separation

Big Picture for OSS Control

Optimality model reduces OSS control to output regulation



Optimality Model: creates proxy error signal ϵ

Integral Control: integrates ϵ

Stabilizing Controller: stabilizes closed-loop system

Application: Inexact Reference Tracking

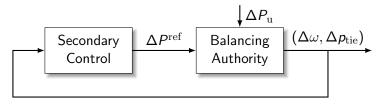
 Want minimum error asymptotic tracking of a (possibly infeasible) reference signal subject to actuator limits, e.g.

$$egin{array}{ll} & \min _{y_{
m m},u} & \|y_{
m m}-r\|_{\infty} \ & ext{subject to} & (y_{
m m},u) \in \overline{Y}(w,\delta) \ & \underline{u} \leq u \leq \overline{u} \ & \end{array}$$

- If reference feasible, then exact tracking possible
- Could promote sparsity in steady-state control actions

Application: Frequency Control of Power Systems

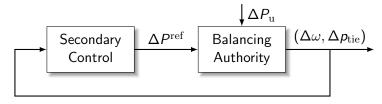
Regulate frequency of an interconnected AC power system in presence of unknown disturbances (locally balance supply and demand)



- 2 Modern challenges / opportunities
 - variation due to RES ⇒ need fast control
 - inverter-based resources \Longrightarrow fast actuation
 - new sensing, comm., comp. \Longrightarrow new architectures

Application: Frequency Control of Power Systems

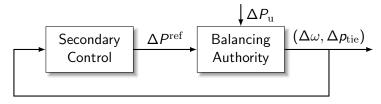
 Regulate frequency of an interconnected AC power system in presence of unknown disturbances (locally balance supply and demand)



- 2 Modern challenges / opportunities
 - variation due to RES \Longrightarrow need fast control
 - inverter-based resources ⇒ fast actuation
 - new sensing, comm., comp. \Longrightarrow new architectures

Application: Frequency Control of Power Systems

 Regulate frequency of an interconnected AC power system in presence of unknown disturbances (locally balance supply and demand)



- Modern challenges / opportunities:
 - ullet variation due to RES \Longrightarrow need fast control
 - inverter-based resources ⇒ fast actuation
 - new sensing, comm., comp. \Longrightarrow new architectures

Key insights into frequency control problem

• For discussion, small-signal network of machines + turbine/gov

$$\begin{split} \Delta \dot{\theta}_i &= \Delta \omega_i \,, \\ M_i \Delta \dot{\omega}_i &= -\sum_{j=1}^n T_{ij} (\Delta \theta_i - \Delta \theta_j) - D_i \Delta \omega_i + \Delta P_{\mathrm{m},i} + \Delta P_{\mathrm{u},i} \\ T_i \Delta \dot{P}_{\mathrm{m},i} &= -\Delta P_{\mathrm{m},i} - R_{\mathrm{d},i}^{-1} \Delta \omega_i + \Delta P_i^{\mathrm{ref}} \,. \end{split}$$

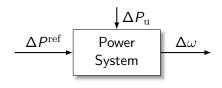
Model internally stable, DC gain analysis yields

$$\Delta \omega_{\rm ss} = \frac{1}{\beta} \sum_{i} \left[\Delta P_{i}^{\rm ref} + \Delta P_{{
m u},i} \right]$$

where $\beta = \sum_{i} (D_i + R_{\mathrm{d},i}^{-1})$ is frequency stiffness.

3 Lots of **flexibility** in choice of ΔP^{ref} !

Optimal Allocation of Secondary Resources

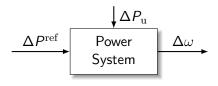


Allocate reserves ΔP_i^{ref} subject to frequency regulation

$$\begin{array}{ll} \underset{\Delta P^{\mathrm{ref}} \in \mathbb{R}^n}{\mathsf{minimize}} & \sum_{i=1}^n C_i(\Delta P_i^{\mathrm{ref}}) \\ \mathsf{subject} \; \mathsf{to} \, F\Delta \omega = \emptyset \end{array}$$

This OSS problem satisfies the robust feasible subspace property
 can construct (several) different optimality models!

Optimal Allocation of Secondary Resources



Allocate reserves $\Delta P_i^{\mathrm{ref}}$ subject to frequency regulation

This OSS problem satisfies the robust feasible subspace property
 can construct (several) different optimality models!

OSS Framework Recovers Recent Controllers

Distributed Averaging PI Control

$$egin{aligned} \epsilon_i &= \Delta \omega_i - \sum_{j=1}^n \mathsf{a}_{ij} (\nabla \mathit{C}_i (P_i^{\mathrm{ref}}) - \nabla \mathit{C}_j (P_j^{\mathrm{ref}})) \\ \dot{\eta}_i &= \epsilon_i \\ P_i^{\mathrm{ref}} &= \mathsf{Stabilizer}_i (\epsilon_i, \eta_i, \omega_i) \end{aligned}$$

- Note: many architecture variations possible
- 2 AGC (stylized version)

$$\dot{\eta} = k \cdot \Delta \omega_{\rm cc}, \qquad P_i^{\rm ref} = (\nabla C_i)^{-1}(\eta)$$

3 Gather-and-broadacst (Dörfler & Grammatico)

$$\dot{\eta} = \frac{1}{n} \sum_{i=1}^{n} \Delta \omega_i, \qquad P_i^{\text{ref}} = (\nabla C_i)^{-1}(\eta)$$

OSS Framework Recovers Recent Controllers

Distributed Averaging PI Control

$$egin{aligned} \epsilon_i &= \Delta \omega_i - \sum_{j=1}^n \mathsf{a}_{ij} (\nabla \mathsf{C}_i(P_i^{\mathrm{ref}}) - \nabla \mathsf{C}_j(P_j^{\mathrm{ref}})) \\ \dot{\eta}_i &= \epsilon_i \\ P_i^{\mathrm{ref}} &= \mathsf{Stabilizer}_i(\epsilon_i, \eta_i, \omega_i) \end{aligned}$$

- Note: many architecture variations possible
- AGC (stylized version)

$$\dot{\eta} = k \cdot \Delta \omega_{\rm cc}, \qquad P_i^{\rm ref} = (\nabla C_i)^{-1}(\eta)$$

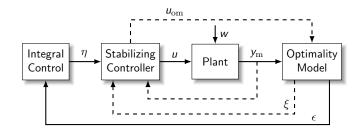
Gather-and-broadacst (Dörfler & Grammatico)

$$\dot{\eta} = \frac{1}{n} \sum_{i=1}^{n} \Delta \omega_i \,, \qquad P_i^{\mathrm{ref}} = (\nabla C_i)^{-1}(\eta)$$

Conclusions

Optimal Steady-State (OSS) Control framework

- Robust feedback optimization of dynamic systems
- ② Optimality model reduces OSS problem to output reg. problem



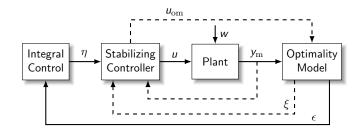
Many pieces of theory wide open ...

- ① Decentralized, hierarchical, competitive, ...
- Performance improvement (e.g., feedforward, anti-windup)

Conclusions

Optimal Steady-State (OSS) Control framework

- Robust feedback optimization of dynamic systems
- ② Optimality model reduces OSS problem to output reg. problem



Many pieces of theory wide open ...

- Decentralized, hierarchical, competitive, . . .
- Performance improvement (e.g., feedforward, anti-windup)

Details in paper on arXiv

SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATIC CONTROL. THIS VERSION: OCTOBER 15, 2018

The Optimal Steady-State Control Problem

Liam S. P. Lawrence Student Member, IEEE, John W. Simpson-Porco, Member, IEEE, and Enrique Mallada Member, IEEE

https://arxiv.org/abs/1810.12892

Liam S. P. Lawrence University of Waterloo

Enrique Mallada John's Hopkins Univ.

Questions

https://ece.uwaterloo.ca/~jwsimpso/ jwsimpson@uwaterloo.ca

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Robustness Feedback Design/Analysis	No Unchanged	Yes More difficult

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

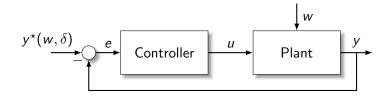
Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Property	Feedforward	Feedback
Setpoint Quality	pprox Optimal	pprox Optimal
High-Fidelity Model	Crucial	Not crucial
Robustness	No	Yes
Feedback Design/Analysis	Unchanged	More difficult
Computational Effort	Moderate	???

MPC: high computational effort, difficult analysis \Rightarrow Alternatives?

Is OSS Control just a standard tracking problem?

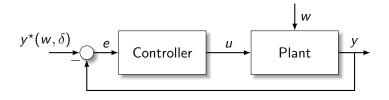


We want y to track $y^*(w, \delta)$, but two problems:

- \bigcirc unmeasured components of w change y^*
- ② y^* depends on uncertainty δ (relevant if $\overline{Y} \subset \mathbb{R}^p$

Standard tracking approach **infeasible** for quickly varying w(t), or large uncertainties δ , or particular choices of regulated outputs

Is OSS Control just a standard tracking problem?

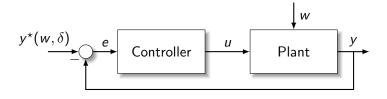


We want y to track $y^*(w, \delta)$, but two problems:

- **1** unmeasured components of w change y^*
- ② y^* depends on uncertainty δ (relevant if $\overline{Y} \subset \mathbb{R}^p$)

Standard tracking approach **infeasible** for quickly varying w(t), or large uncertainties δ , or particular choices of regulated outputs

Is OSS Control just a standard tracking problem?



We want y to track $y^*(w, \delta)$, but two problems:

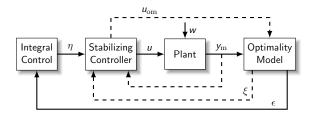
- \bullet unmeasured components of w change y^*
- ② y^* depends on uncertainty δ (relevant if $\overline{Y} \subset \mathbb{R}^p$)

Standard tracking approach **infeasible** for quickly varying w(t), or large uncertainties δ , or particular choices of regulated outputs

Towards an internal model principle . . .

$$\epsilon = \begin{bmatrix} Hy - Lw \\ T_0^\mathsf{T} \nabla f_0(y, w) \end{bmatrix}$$

$$\operatorname{range}(T_0) = V(\delta) \cap \operatorname{null}(H)$$



Interpretation: Exact robust asymptotic optimization achieved if loop incorporates a model of the optimal set of the optimization problem

Slide on EOA Approach ...

Example 1: Necessity of Equilibrium Constraints

Consider the OSS control problem:

Opposite the state of the st

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w$$

$$y = \begin{bmatrix} x_1 \\ u \end{bmatrix}$$

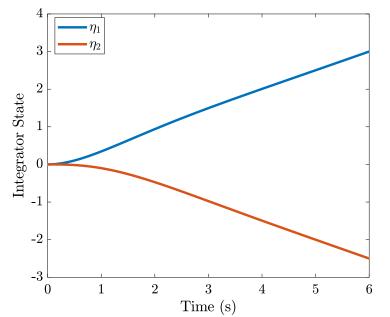
Optimization problem:

$$\underset{y \in \mathbb{R}^2}{\text{minimize}} \quad g(y) := \frac{1}{2}y_1^2 + \frac{1}{2}y_2^2$$

What happens if we omit the equilibrium constraints?

$$\dot{\eta} = \nabla f_0(y)$$
$$u = -K\eta$$

Example 1: Necessity of Equilibrium Constraints (cont.)



Example 2: Necessity of Robust Feasible Subspace

Consider the OSS control problem:

Opnics:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 - \delta & 0 \\ 1 + \delta & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u + \begin{bmatrix} 1 \\ 1 \end{bmatrix} w$$
$$y = \begin{bmatrix} x_1 \\ u \end{bmatrix}$$

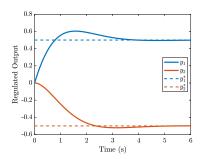
Optimization problem:

$$\begin{array}{ll} \underset{y \in \mathbb{R}^2}{\text{minimize}} & \frac{1}{2}y_1^2 + \frac{1}{2}y_2^2 \\ \text{subject to} & y \in \overline{Y}(w, \delta) = \mathsf{y}(w, \delta) + V(\delta) \end{array}$$

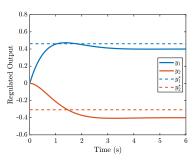
We can show
$$V(\delta) = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ \delta \end{bmatrix} \right\} \Rightarrow V(\delta)$$
 dependent on δ .

Example 2: Necessity of Robust Feasible Subspace (cont.)

- ullet We apply our scheme anyway supposing $\delta=0$
- Optimality model + integral control yields. . .



If $\delta=0$ in the true plant \Rightarrow achieve optimal cost of 0.1538.



If $\delta = 0.5$ in the true plant \Rightarrow achieve sub-optimal cost of 0.1599.

Robust Output Subspace Optimality Model

If furthermore $V(\delta)$ itself is independent of δ , then

$$\begin{split} \dot{\mu} &= Hy - Lw \\ \dot{\nu} &= \textit{max}(\nu + Jy - Mw, \mathbb{0}) - \nu \\ \epsilon &= \textit{R}_0^\mathsf{T}(\nabla f_0(y, w) + H^\mathsf{T}\mu + J^\mathsf{T}\nu) \end{split}$$

range
$$R_0 = V(\delta)$$
 (Design freedom!)

is also an optimality model for the LTI-Convex OSS Control Problem.

① Can take $R_0 = I$ if $V(\delta) = \mathbb{R}^p$, which holds if

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \text{has full row rank} \quad \Longleftrightarrow \quad \begin{array}{c} \text{No transmission zeros} \\ \text{at } s = 0 \end{array}$$

 Again, different equivalent formulations of optimization problem give different optimality models

Robust Output Subspace Optimality Model

If furthermore $V(\delta)$ itself is independent of δ , then

$$\dot{\mu} = Hy - Lw$$

$$\dot{\nu} = \max(\nu + Jy - Mw, 0) - \nu$$

$$\epsilon = R_0^{\mathsf{T}} (\nabla f_0(y, w) + H^{\mathsf{T}} \mu + J^{\mathsf{T}} \nu)$$

range
$$R_0 = V(\delta)$$
 (Design freedom!)

is also an optimality model for the LTI-Convex OSS Control Problem.

1 Can take $R_0 = I$ if $V(\delta) = \mathbb{R}^p$, which holds if

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \text{has full row rank} \quad \Longleftrightarrow \quad \begin{array}{c} \text{No transmission zeros} \\ \text{at } s = 0 \end{array}$$

 Again, different equivalent formulations of optimization problem give different optimality models

Robust Output Subspace Optimality Model

If furthermore $V(\delta)$ itself is independent of δ , then

$$\begin{split} \dot{\mu} &= Hy - Lw \\ \dot{\nu} &= \textit{max}(\nu + Jy - Mw, \mathbb{0}) - \nu \\ \epsilon &= \textit{R}_0^\mathsf{T}(\nabla f_0(y, w) + H^\mathsf{T}\mu + J^\mathsf{T}\nu) \end{split}$$

range
$$R_0 = V(\delta)$$
 (Design freedom!)

is also an optimality model for the LTI-Convex OSS Control Problem.

• Can take $R_0 = I$ if $V(\delta) = \mathbb{R}^p$, which holds if

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \text{has full row rank} \quad \Longleftrightarrow \quad \begin{array}{c} \text{No transmission zeros} \\ \text{at } s = 0 \end{array}$$

 Again, different equivalent formulations of optimization problem give different optimality models

OSS Control in the Literature

The OSS controller architecture found throughout the literature on real-time optimization.

Problem [Nelson and Mallada '18]

Design a feedback controller to drive the system

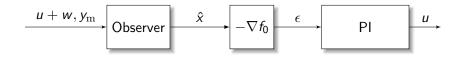
$$\dot{x}(t) = Ax(t) + B(u(t) + w)$$

$$y_{m}(t) = Cx(t) + D(u(t) + w)$$

to the solution of the optimization problem

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x).$$

OSS Control in the Literature (cont.)



Controller Design

The optimality model is an observer with gradient output

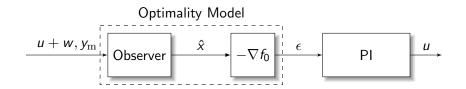
$$\dot{\hat{x}} = (A - LC)\hat{x} + (B - LD)(u + w) + Ly_{\rm m}$$

$$\epsilon = -\nabla f_0(\hat{x}).$$

A PI controller serves as internal model and stabilizer

$$\dot{e}_I = \epsilon$$
, $u = K_I e_I + K_p \epsilon$

OSS Control in the Literature (cont.)



Controller Design

The optimality model is an observer with gradient output

$$\dot{\hat{x}} = (A - LC)\hat{x} + (B - LD)(u + w) + Ly_{\text{m}}$$

$$\epsilon = -\nabla f_0(\hat{x}).$$

A PI controller serves as internal model and stabilizer

$$\dot{e}_I = \epsilon \,, \quad u = K_I e_I + K_p \epsilon \,.$$