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Control Systems 101

@ Prototypical feedback control problem is tracking and disturbance
rejection in the presence of model uncertainty
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@ Prototypical feedback control problem is tracking and disturbance
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Feedforward Optimization of Large-Scale Systems

minimize f(z) + g(r)

subject to  (z,r) € C(model, pred.)
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Feedback Optimization of Large-Scale Systems

Ek+1 = f(&k, model, pred., meas.)
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Optimal Steady-State Control Problem Statement

{ R
Given:
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Optimal Steady-State Control Problem Statement

Given:
@ a dynamic system model with

e a class of external disturbances w(t)
o a model uncertainty specification (e.g., parametric)

@ a vector of outputs y € RP of system to be optimized

© an optimization problem in y

Design, if possible, a feedback controller such that

© closed-loop is (robustly) well-posed and internally stable

@ the regulated output tracks its optimal value

lim y(t) —y*(t) =0, Vdisturb, V uncertainties

t—00
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LTI-Convex OSS Control: Setup Overview

© Uncertain (possibly unstable) LTI dynamics

x = A(6)x + B(8)u + By (d)w
Ym = Cn(9)x + Dy (9) + Qum(d)w
y=C(0)x+ D(0)u+ Q(d)w

e ) = parametric uncertainty, w = const. disturbances
@ ym = system measurements available for feedback

e y = system states/inputs to be optimized
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LTI-Convex OSS Control: Setup Overview

© Uncertain (possibly unstable) LTI dynamics

x = A(6)x + B(8)u + By (d)w
Ym = Cn(9)x + Dy (9) + Qum(d)w
y=C(0)x+ D(0)u+ Q(d)w

e ) = parametric uncertainty, w = const. disturbances
@ ym = system measurements available for feedback

e y = system states/inputs to be optimized

@ a steady-state convex optimization problem

y*(w, ) = argmin{f(y,w) : y € C(w,d)} J
y€ERP
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LTI-Convex OSS Control: Setup |

0=A(0)x + B(d)a + By (d)w
y=C(8)x+ D(0)a+ Q(6)w

Forced equilibria (X, 0, y) satisfy

This defines an affine set of achievable steady-state outputs

Y(w, §) = (offset vector) + V/(6) J
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LTI-Convex OSS Control: Setup |

0=A(0)x + B(d)a + By (d)w
y=C(8)x+ D(0)a+ Q(6)w

Forced equilibria (X, 0, y) satisfy

This defines an affine set of achievable steady-state outputs

Y(w, §) = (offset vector) + V/(6) J

Note: Due to
@ selection of variables y € RP to be optimized, and/or
@ structure of state-space matrices (A, B, C, D)
it may be that Y(w, ) C RP

constraint ¥ € Y(w, §) cannot be ignored!!
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LTI-Convex OSS Control: Setup Il

Desired regulated output y*(w,d) solution to
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Desired regulated output y*(w,d) solution to

minimize fy(y, w) convex cost)
yERP

(
subject to  y € Y(w, ) (equilibrium)
Hy = Lw (engineering equality)
Jy < Mw (engineering inequality)

Equilibrium constraints ensure compatibility between the
plant and the optimization problem

— guarantees a steady-state exists s.t. y = y*(w, 9).
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LTI-Convex OSS Control: Setup Il

Desired regulated output y*(w,d) solution to

minimize fy(y, w) convex cost)
yERP

(
subject to  y € Y(w, ) (equilibrium)
Hy = Lw (engineering equality)
Jy < Mw (engineering inequality)

Equilibrium constraints ensure compatibility between the
plant and the optimization problem

— guarantees a steady-state exists s.t. y = y*(w, 9).

We want to track optimal output y*(w, ) ]
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Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the true tracking error e = y*(w,d) — y

9/27



Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the true tracking error e = y*(w,d) — y

|w

— > Plant

Ym

Y

Optimality Model

€
—

[

& = OM state

Y

9/27



Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the true tracking error e = y*(w,d) — y
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Steady-state requirement: if the plant and optimality model
are both in equilibrium and € = 0, then y = y*(w, ¢). J
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Optimality Models for OSS Control

An optimality model filters the available measurements to robustly
produce a proxy error € for the true tracking error e = y*(w,d) — y

|w

— 7 Plant Y » Optimality Model L <,
& = OM state

[

Y

Steady-state requirement: if the plant and optimality model
are both in equilibrium and € = 0, then y = y*(w, ¢). J

Driving € to zero (+ internal stability) drives y to y*
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Big Picture for OSS Control

Optimality model reduces OSS control to output regulation
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Big Picture for OSS Control

Optimality model reduces OSS control to output regulation

______ Yom .
! lw :
1 Y
Integral | 7 | Stabilizing| u P Ym | Optimality
Control "| Controller i ant .| Model
T T s ! :
L £\
____________________________ D

Optimality Model: creates proxy error signal €
Integral Control: integrates €

Stabilizing Controller: stabilizes closed-loop system

10/27



Optimality Model Details |

Can we implement an optimality model that is robust against §?
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Optimality Model Details |

Can we implement an optimality model that is robust against §?

mini%lize fo(y, w)

yeRP
subject to y € Y(w, ) = (offset) + V/(9)
Hy = Lw
Jy < Mw

Optimality condition:
Vih(y*,w) + JTv* L (V(5) Nnull(H))

possibly depends on uncertain parameter J.
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Optimality Model Details Il

When can an optimality model encode the gradient KKT condition?
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Optimality Model Details Il

When can an optimality model encode the gradient KKT condition?

Vih(y*,w) + JTv* L (V(5) Nnull(H))

Robust Feasible Subspace Property
V() Nnull(H) is independent of &

V(d1)

N

null(H)

ez
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Optimality Model Details Il
If Robust Feasible Subspace property holds, then

v =o(v,Jy — Mw)
Hy — Lw
To" (Vio(y, w) + JTv)

€ =

range( To)
= V(0) Nnull(H)

is an optimality model for the LTI-Convex OSS Control Problem.
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Optimality Model Details Il
If Robust Feasible Subspace property holds, then

v =o(v,Jy — Mw)
Hy — Lw
To' (Vio(y, w) + JTv)

range( To)
= V(J) Nnull(H)

€ =

is an optimality model for the LTI-Convex OSS Control Problem.

Comments:

@ T, z extracts component of z in subspace V(&) Nnull(H):

e2=0 = Vi(y,w) + JTv L V(5) Nnull(H)

@ Flexibility: different equivalent formulations of optimization problem
yield different optimality models
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What happens if RFS does not hold?

Regulated Output
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Stabilizer Details |

Can we actually stabilize this thing?

@ Goal: stabilize cascade of plant — optimality model — integrators
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Stabilizer Details |

Can we actually stabilize this thing?

@ Goal: stabilize cascade of plant — optimality model — integrators

P Ym | Optimality _| Integral
ant Model " | Control
[ X !
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@ Can prove closed-loop stable = OSS control problem solved
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Can we actually stabilize this thing?

@ Goal: stabilize cascade of plant — optimality model — integrators
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@ Can prove closed-loop stable = OSS control problem solved
© For QP OSS control, can prove cascade is stabilizable iff
o plant stabilizable/detectable
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@ Can prove closed-loop stable = OSS control problem solved
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e optimization problem has a unique solution
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Stabilizer Details |

Can we actually stabilize this thing?

@ Goal: stabilize cascade of plant — optimality model — integrators

Pl Ym | Optimality _| Integral
ant Model "| Control
[ y T

< - - - - -

e e L)

A
1

L _ | Stabilizing
""""" Controller [*~~ 77~

@ Can prove closed-loop stable = OSS control problem solved
© For QP OSS control, can prove cascade is stabilizable iff
o plant stabilizable/detectable
e optimization problem has a unique solution
e engineering constraints not redundant with equilibrium constraints
o Ty has full column rank
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Stabilizer Details Il

Optimality model contains monotone nonlinearity Viy(y)
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Stabilizer Details Il

Optimality model contains monotone nonlinearity Viy(y) ...

Uom
1 1
: b i
Integral | 7 | Stabilizing| u Ym Optimality
Control > Controller > Plant ™| Model

/\ /\ /\ '

_______________________

Stabilizer design options:
@ |In theory: full-order robustly stabilizing controller design

@ In practice: low-gain integral control u = —K7n if open-loop stable, or
any heuristic, e.g., linearize and do > design
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Stabilizer Details Il

Optimality model contains monotone nonlinearity Viy(y) ...

1
Integral | " |Stabilizing| wu P Ym | Optimality
Control " | Controller " ant . | Model
7y 7y 7y ' T
' b __ '
! €
_______________________ .

Stabilizer design options:
@ |In theory: full-order robustly stabilizing controller design

@ In practice: low-gain integral control u = —K7n if open-loop stable, or
any heuristic, e.g., linearize and do > design

Closed-loop stability analysis:
@ Robust stability (e.g., IQC-based) or time-scale separation
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Big Picture for OSS Control

Optimality model reduces OSS control to output regulation

______ Yom .
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Integral | 7 | Stabilizing| u P Ym | Optimality
Control "| Controller i ant .| Model
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____________________________ D

Optimality Model: creates proxy error signal €
Integral Control: integrates €

Stabilizing Controller: stabilizes closed-loop system
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Application: Inexact Reference Tracking

e Want minimum error asymptotic tracking of a (possibly infeasible)
reference signal subject to actuator limits, e.g.

minimize  ||Ym — oo
Ym,u

subject to  (Vm, u) € Y(w, )

u<u<u

o If reference feasible, then exact tracking possible

@ Could promote sparsity in steady-state control actions
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Application: Frequency Control of Power Systems

O Regulate frequency of an interconnected AC power system in
presence of unknown disturbances (locally balance supply and

demand)

Secondary
Control

APref

|ap,

Balancing
Authority

(Awa Aptie)
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Application: Frequency Control of Power Systems

O Regulate frequency of an interconnected AC power system in
presence of unknown disturbances (locally balance supply and

demand)
|ap,
Secondary | AP™ | Balancing (AW;APtie)‘
Control | Authority -

@ Modern challenges / opportunities:
e variation due to RES = need fast control

e inverter-based resources = fast actuation

@ new sensing, comm., comp. = new architectures
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Key insights into frequency control problem

@ For discussion, small-signal network of machines + turbine/gov

Ab; = Aw;,
M A& = — ijl Ti(A0; — AG;) — DiAw; + APy i + APy ;
TiAPy ;= —APy; — Ry Aw; + AP

Pl

@ Model internally stable, DC gain analysis yields

A = ; > APF 4 AP,

where =) ,(D; + R(Iil) is frequency stiffness.

O Lots of flexibility in choice of APf!
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Optimal Allocation of Secondary Resources

APref

| ap,

Power
System
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Optimal Allocation of Secondary Resources

| ap,
APpref Power Aw
e
System

Allocate reserves AP,-ref subject to frequency regulation

n
minimize g CG(aPreh
APref cRn i=1

subject to FAw =0

@ This OSS problem satisfies the robust feasible subspace property
= can construct (several) different optimality models!
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OSS Framework Recovers Recent Controllers
© Distributed Averaging Pl Control

6= Bwi =Y a(VG(PI) = VG(P)

ni = ¢

PI.ref = Stabilizer;(e;, n;, w;)

o Note: many architecture variations possible
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OSS Framework Recovers Recent Controllers
© Distributed Averaging Pl Control

6= Bui =Y (VP ~ VG(P™)

N = €
PI.ref = Stabilizer;(e;, n;, w;)

o Note: many architecture variations possible

@ AGC (stylized version)

n=k-Awe, Pt = (VG)~Y(n) J

© Gather-and-broadacst (Dorfler & Grammatico)

:%zn:Aw,-, Pt — (V)Y (n) J
=il
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Conclusions

Optimal Steady-State (OSS) Control framework

© Robust feedback optimization of dynamic systems

@ Optimality model reduces OSS problem to output reg. problem
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Conclusions

Optimal Steady-State (OSS) Control framework

© Robust feedback optimization of dynamic systems

@ Optimality model reduces OSS problem to output reg. problem

Uom
1 1
: 1 i
Integral Stabilizing | u Ym Optimality
Control | | Controller [ | F2" T Model
T T T :
1

Many pieces of theory wide open ...

@ Decentralized, hierarchical, competitive, ...

@ Performance improvement (e.g., feedforward, anti-windup)
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Questions

https://ece.uwaterloo.ca/~jwsimpso/
jwsimpson@uwaterloo.ca
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Feedforward vs. Feedback Optimization
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Feedforward vs. Feedback Optimization

Property Feedforward Feedback
Setpoint Quality ~ Optimal ~ Optimal
High-Fidelity Model Crucial Not crucial
Robustness No Yes
Feedback Design/Analysis Unchanged | More difficult
Computational Effort Moderate 777

MPC: high computational effort, difficult analysis

= Alternatives?

Compared to MPC, if we give a bit on trajectory optimality, can
we can gain a lot on ease of design, analysis, and implementation?

Here is a first cut of such an approach.
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Is OSS Control just a standard tracking problem?

|w

y*(W7 6) e u

Y

— Controller Plant

We want y to track y*(w,¢), but two problems:
@ unmeasured components of w change y*
@ y* depends on uncertainty § (relevant if Y C RP)

Standard tracking approach infeasible for quickly
varying w(t), or large uncertainties J, or particular
choices of regulated outputs




Towards an internal model principle ...

€= [ Hy — Lw ] range( To) = V() Nnull(H) |
TUTVfb()@ W)

Integral | 7 | Stabilizing | v _ P Ym | Optimality
Control " | Controller >| lant .| Model
¥ X 7 !
1

Interpretation: Exact robust asymptotic optimization
achieved if loop incorporates a model of the optimal set of
the optimization problem




Slide on EOA Approach ...



Example 1: Necessity of Equilibrium Constraints
Consider the OSS control problem:

Sl el e A RS
b

© Dynamics:

@ Optimization problem:

. ) 1, o 1,
minimize = = i~
eR g\ 2}’1 2)’2

What happens if we omit the equilibrium constraints?

1= Vh(y)
u=—Kng



Example 1: Necessity of Equilibrium Constraints (cont.)

4 T T T T T
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Example 2: Necessity of Robust Feasible Subspace

Consider the OSS control problem:
@ Dynamics:

A= AR Bl
r=[3]

@ Optimization problem:

C 1, n 1,
minimize — -
eR 2}/1 2)’2

subject to y € Y(w,6) = y(w,d) + V(9)

|

We can show V/(4) = span { [(15} } = V/(§) dependent on §.



Example 2: Necessity of Robust Feasible Subspace (cont.)

@ We apply our scheme anyway supposing § =0
@ Optimality model + integral control yields. ..

0.8

o
>

S
T

S
o

o

Regulated Output

Regulated Output

Time (s)
If § = 0.5 in the true plant
= achieve sub-optimal cost of
0.1599.

Time (s)
If § =0 in the true plant
= achieve optimal cost of 0.1538.



Robust Output Subspace Optimality Model

If furthermore V() itself is independent of 4, then
pn=Hy —Lw
v=max(v+ Jy — Mw,0) — v range Ry = V(9) J
€= Ry (Vi(y,w)+H u+ JTv)

is also an optimality model for the LTI-Convex OSS Control Problem.
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Robust Output Subspace Optimality Model

If furthermore V() itself is independent of 4, then
pn=Hy —Lw
v=max(v+Jy — Mw,0) —v range Ry = V(9) J
e=Ro" (Vi(y,w)+H p+JTv)

is also an optimality model for the LTI-Convex OSS Control Problem.
O Can take Ry =/ if V() = RP, which holds if

No transmission zeros

ats=0

A B
¢ D

} has full row rank <+—

@ Again, different equivalent formulations of optimization problem give
different optimality models



OSS Control in the Literature

The OSS controller architecture found throughout the literature on
real-time optimization.

Problem [Nelson and Mallada '18]
Design a feedback controller to drive the system
x(t) = Ax(t) + B(u(t) + w)
Ym(t) = Cx(t) + D(u(t) + w)

to the solution of the optimization problem

minimize f(x).
x€ER"




OSS Control in the Literature (cont.)
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OSS Control in the Literature (cont.)

Optimality Model

Pl
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Controller Design
The optimality model is an observer with gradient output

£=(A-LC)%+ (B - LD)(u+ w) + Lym
e=—Vfi(X).

A Pl controller serves as internal model and stabilizer

é =€, u:K,e,+er.
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