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dynamical systems with multiplicative noise
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* nominal system matrices A, B,C
* additive noises w¢, vy with covariances W,V

* multiplicative noises , w4, w With variances o;, 4, ;



dynamical systems with multiplicative noise
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dynamical systems with multiplicative noise

not a new topic...

SIAM J. CoNTRO
Vol. 5, No.
Printed in U.S.A.

OPTIMAL STATIONARY CONTROL OF A LINEAR SYSTEM WITH
STATE-DEPENDENT NOISE*

W. M. WONHAM{

1. Introduction. Consider the linear control system described by the
formal, vector stochastic differential equation

(1.1) = Ax — Bu + Cuy + G(zx)u.

In (1.1), w is the control and 1y , . are independent Gaussian white noise
disturbances." The elements of the matrix G are assumed to be linear in x;
and so the term G(x)u, represents a disturbance of which the intensity is
roughly proportional to the deviation of z from the origin z = 0. Equiva-
lently, the disturbance can be regarded as a wideband random perturbation
of the system matrix 4.

Now consider the problem of choosing a feedback control v = ¢(z) such



dynamical systems with multiplicative noise

networked control systems
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... but increasingly relevant in emerging
highly distributed autonomous systems

data-driven/adaptive/learning

uncertainty and robustness




talk outline

exact global convergence of policy gradient
sparse control architecture design

data-driven control

extensions and variations

conclusions



exact global convergence
of policy gradient

ﬁ”.
4\

QQ\.




dynamical systems with multiplicative noise
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optimal control assumption:

minimize
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optimal control of dynamical systems
with multiplicative noise

* exact solution via dynamic programming yields
generalized Riccati equation

p q
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* solved via recursion with Py = @ (value iteration)
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optimal control of dynamical systems
with multiplicative noise

* exact solution via dynamic programming yields
generalized Riccati equation

p q
P=Q+A"PA+» oAl PA;—A"PB(R+B"PB+ ) B/ PB)"'B"PA

i=1 j=1

1
q
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e solved via recursion with Py = Q (value iteration)

p q
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optimal control of dynamical systems
with multiplicative noise

 alternative: fix linear policy u, = Kxz,, define cost

C(K)= E » z/(Q+ K"RK)x,

L0y 45 1 t—0

= trace(Px Xy)

where Py solves generalized Lyapunov equation
Pr=Q+ K'RK + (A+ BK)' Py (A + BK)

p q
+> A PgA;+ Y  ;K"B] PkB;K
i=1 j=1



policy gradient algorithm

Algorithm (policy gradient)
K K nVC(K)

one small problem...



non-convexity of C(K
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gradient domination

Definition (gradient domination)
A function f : R" — R is called gradient dominated if

IA>0: V@I AMf(z) f(z7) YzeR”

e gradient grows faster than quadratic away from
optimal value

* every stationary point is a global minimum
* Includes many non-convex functions

* easy to prove gradient descent converges globally



gradient domination

Definition (gradient domination)
A function f : R" — R is called gradient dominated if

IA>0: V@I AMf(z) f(z7) YzeR”

e also an old topic!

GRADIENT METHODS FOR THE MINIMISATION
OF FUNCTIONALS*

B.T. POLYAK

(Moscow)

(Received 2 July 1962)

Let f(t) be a functional defined in the (real) Hilbert space H. The
problem consists in finding its minimum value f* = inf f(x) and some



gradient domination

f(z)



multiplicative LQR cost is gradient dominated

* generalizes recent deterministic result (Fazel et al. 2018)



policy gradient converges globally

Algorithm (policy gradient)
KS_|_1 — KS HVC(KS)

Theorem (Gravell + Summers 2019)

For any initial gain Ky € dom(C' there is a constant step
size (K, problem data) and linear rate p < 1 such that

e generalizes recent deterministic result (Fazel et al. 2018)



policy iteration (a.k.a. Gauss-Newton)

Algorithm (policy iteration)
K.p1 =K, nRg VCO(K,)Xx.

« essentially a Newton algorithm (in function space)



policy iteration tar faster than policy gradient

Convergence results using policy descent, first 30 iterations
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multiplicative noise awareness can be
crucial for good control performance

noise-aware noise-ignorant

control control

eI 484 00
system

noise-free 07 5 6.3
system
gain 226 —0.04 2.62 0.06
matrix —0.04 0.004 —0.001 0.00
LQR cost

 failing to account for multiplicative noise can destabilize an
otherwise (mean square) stable system!



sparse control
architecture design




sparse gain design

minimize  C(K) + v9(K)

A A

multiplicative sparsity-promoting
LQR cost regularizer

v > 0 trades off performance and controller sparsity

cf. Lin, Fardad, Jovanovic, Dorfler, et al. for additive case



reqularizer flavors
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communication sensor & actuator
architecture design selection




reqularizer flavors

communication
architecture design



regularizer tlavors

G
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sparse group LASSO
with group overlap
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architecture design
with logical constraints



proximal algorithms

minimize  C(K) + v9(K)
sSMooth NON-SMOOoth

e proximal/operator splitting methods
* nice review by Parikh + Boyd 2014, nice recent work
by Jovanovic et al.

Algorithm (proximal gradient)

K prox,. (K nVC(K))

7779(



proximal operators

e some proximal operators doable in closed form:
e.qg., for ||vec(K)||1 (elementwise) soft thresholding

prox,. . (K) = (K —ny)+ — (=K +n7)+

o
e

* others can be evaluated efficiently




wide area control of power networks

8/10/96 blackout due to instability of 0.25Hz inter-area mode
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wide area control of power networks

conventional primary frequency vs. distributed wide area control



wide area control of power networks

conventional primary frequency vs. distributed wide area control



case study: IEEE 39 bus test network
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* linearized swing dynamics, with multiplicative inertia noise

e quadratic network coherency performance metric to
penalize relative angle differences and frequency deviations

« proximal policy iteration for noise-aware architecture design



noise-aware architecture design
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significantly lower cost with noise-aware architecture



data-driven control
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data-driven, learning-based control

* recent undeniable successes, along with massively
(over?)hyped efforts |n I\/IL/RL/AI + control

Deep Drone Racing:
Learning Agile Flight in Dy mic Environments

Elia Kaufmann* Antonio Loquercio® ~ Rene Ranftl

END-TO-END DEEP LEARNING PLATFORM
FOR SELF-DRIVING CARS
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e unclear if/nhow these can be transferred to large, complex,
safety critical systems
e false dichotomy: model-free vs. model-based
* how best to combine?
* despite long history, still many fundamental open
problems, opportunities to exploit spectacular modern
computation and data resources



The Linearization Principle

Benjamin Recht » Feb 5, 2018

This is the third part of “An Outsider’s Tour of Reinforcement Learning.” Part 4 is here.
Part 2 is here. Part 1 is here.

“‘If a machine learning algorithm does crazy things
when restricted to linear models, it's going to do
crazy things on complex nonlinear models too”




The Linearization Principle

Benjamin Recht » Feb 5, 2018

This is the third part of “An Outsider’s Tour of Reinforcement Learning.” Part 4 is here.
Part 2 is here. Part 1 is here.

“What is frustrating about machine learning is that the
algorithms can't articulate what they're thinking. We don't
know why they work, so we don’t know if they can be
trusted... As human beings, we want more than answers.
We want insight. This is going to be a source of tension
Newdlodk 0 our interactions with computers from now on.”

Cimes




The Linearization Principle

Benjamin Recht » Feb 5, 2018

This is the third part of “An Outsider’s Tour of Reinforcement Learning.” Part 4 is here.
Part 2 is here. Part 1 is here.

 LQR as an important theoretical benchmark
« multiplicative noise LQR as an interesting elaboration that
explicitly incorporates model uncertainty, robustness issues



data efficiency trade offs

data efficiency

vV 9 M

policy gradient Q-learning sys ID + control

<

generality + implementation ease



‘model-free” policy gradient

Algorithm (“model-free” policy gradient)

/\

K K nVC(K)

e can estimate policy gradient via zeroth order optimization

Algorithm (“model-free” policy gradient estimate)

for:=1,....m (m trajectory rollouts, length [)
sample policy: K; = K +U;, U; ~Ujjjpr |
simulate [ steps, record empirical costs ¢ — th

end for m —1

— 1

return estimate VC(K) = — > %C*Z-Ui
1=1



‘model-free” policy gradient converges globally
for multiplicative noise LQR

Algorithm (“model-free” policy gradient)

A

K K nVC(K)

Theorem (Gravell + Summers 2019)

For any Initial stabilizing gain, there is an exploration radius,
a number and length of trajectory rollouts of polynomial size
INn problem data, and constant step size such that gradient
descent converges globally to the optimal gain matrix.

e multiplicative noise generalization of Fazel et al.
* |.e., policy gradient provably "works”
* however, extremely data inefficient



policy iteration via Q-learning

Algorithm (“model-free” policy iteration via Q-learning)

Ko1 =K, nRg VC(K )Xy

» update equivalentto K,11 = —Q, QL where
o [z T [Q+ATPk, A+ P oy AT Py A, AT Pk B x
Ks (IE,U) - U BTPKSA R + BTPKB + Z?:l ijTPKsBj U

 just need Q-function estimate to implement policy iteration!



policy iteration via Q-learning

Algorithm (“model-free” policy iteration via Q-learning)

N—1 AT
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Algorithm 1 Estimation of policy iteration parameters
1: for [ from 1 to N do

2wy~ N0, 2 }exploration noise

3: Uy " ~ N(O, 3Im)

4: fortfromOtoT 1do

5: A= A+>P A with ; ~D;

6: B= B—I—Zjl jBj with ; ~ G;

v gt rollout trajectories

9: end if

0 o), = A+ Bul)

11 end for ) least squares
: () (l) (1) (0) (0) . .

2 Qe uy)) = Yo wi Qe+ R Q function estimate
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policy iteration via Q-learning converges
globally for multiplicative noise LQR

Algorithm (“model-free” policy iteration via Q-learning)

N—1 AT
KS-I-l — _Quu Qazu

« multiplicative noise generalization of BradtkeYdstieBarto 1994
e i.e., policy iteration via Q-learning provably “works”
* however, somewhat data inefficient



sys |ID + model-based control

 traditional alternative: system ID + (robust) model-based control
« cf. recent sample complexity results from “coarse |ID”
framework of Dean, Mania, Matni, Recht, Tu

* how to estimate multiplicative noise model from data”

p q
Tir1 = A+ Z (tzAz) ét + B+ Z (tz’Bz’) {t
i=1 i=1

e assume A;, B; given, wantto estimate A, B, a;, ;



sys |ID + model-based control

 traditional alternative: system ID + (robust) model-based control

* how to estimate multiplicative noise model from data”
 first moment (mean) dynamics u; = Ex;

piv1 = Apg + Buy

e second moment dynamics X; = Extxf U; = Eutuf

p q
Xt—l—l — AXtAT + BUtBT + Z azAthA? T Z ]BJUtB]T
i=1 J=1



sys |ID + model-based control

e two-stage least squares estimation algorithm

Stage 1
) ) ( [ 5 )
{A, B} = argmin « Z per1 — (Ape + Bug)  p
AB |15 2y

Stage 2

a>0, >0 | =5 i

! p q 5
{&, } = argmin {Z Xep1 — (AX, A" + BUBT + ) a; AX: AT =) ;B;UB] 2}
j=1



sys |ID + model-based control

e two-stage least squares estimation algorithm
e using rollout trajectory data

Stage 1
( n, \
i Bl - = (1) (l) ()
{A, B} = arirgm< S:Sj z;,,, — (Az;  + Bu;’) ; >
2 =1 t=0 J
Stage 2
r Tp T A A
(@, '} = argmin {YYY T3 ), Bide,, — Ay + Bui))(Az) + Bu;))T
1=1 j=1 t=0

L,Je  J¢ 1t 1 9

p q - 9
~Y A O AT S Bjua)u(w



sys |ID + mode

-based control:

data ef

iclency

* with model estimates, simply use model-based design
procedure to compute (approximate) optimal controller

e Or via robust variants

e preliminary numerical experim

ents indicate that sys ID +

model-based control is far more data efficient than policy
gradient/iteration for multiplicative noise models

e at least when # of multipli

cative noise terms is small

e working on theoretical non-asymptotic sample complexity
results that generalize Recht et al. to multiplicative noise
* however, data efficiency trade offs will take a different
shape and may depend on # of multiplicative noise terms



summary
&
conclusions



summary & conclusions

* multiplicative noise systems deserve more attention in
context of highly distributed autonomous systems

exact global convergence data-driven control

control architecture design

* preliminary results here; a lot of exciting work ahead!



extensions and variations
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ongoing and future work

data-drive control architecture design
(multiplicative noise) dynamic games
continuous time (stochastic differential equations)
state estimation
accelerated and robust gradient methods
static output feedback
non-asymptotic sample complexity for sys |ID + control
regret analysis for adaptive control
learning in nonlinear systems via local linear approximation
applications, e.Q.:
* |low- and variable-inertia power networks
* networked autonomous robot teams
* turbulent fluid flow
e SOft robots
* neuronal brain networks



thank you!

questions?





